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Algorithms are developed for the exact evaluation of the 3j-coefficients of Wigner and the 6j-coefficients of 
Racah. These coefficients arise in the quantum theory of coupling of angular momenta. The method is 
based on the exact solution of recursion relations in a particular order designed to guarantee numerical 
stability even for large quantum numbers. The algorithm is more efficient and accurate than those based on 
explicit summations, particularly in the commonly arising case in which a whole set of related coefficients 
is needed. 

I. INTRODUCTION 

Common algorithms for the evaluation of 3j- and 6j
coefficients are based on the explicit expressions of 
Wigner1 and Racah. 2 Calculations involving the quantum 
mechanical coupling of angular momenta often require 
the evaluation of whole strings of coupling coefficients 
of the kind: 

(i1 j2 ja ) for all allowed jlJ 
m 1 m 2 ma 

(i1 j2 j3 ) for all allowed m 2 , 
m1 m 2 -m1-m2 

f1 11 
j2 j3} 

l2 l3 
for all allowed j l' 

Numerical examples of these sets of coupling coef
ficients are given in Figs. 1-3. 

(1) 

(2) 

(3) 

The existing algorithms, however, evaluate coupling 
coefficients separately and do not make use of relation
ships between the values of neighboring 3j- and 6j-co
efficients. The algorithms, furthermore, are inappli
cable for large angular momentum values (-lOOn) which, 
for example, occur frequently in problems of molecular 
dynamics. 

We have now numerically tested an algorithm for the 
evaluation of 3j- and 6j-coefficients based on recursion 
equations relating the coefficients in the strings (1), (2), 
or (3). This algorithm simultaneously generates all 
coupling coefficients within these strings without more 
numerical effort than is needed to evaluate a single 
coupling coefficient. Further, this algorithm is nu
merically applicable for large angular momentum 
quantum numbers. 

In the follOwing, we will present the derivations of 
the recursion equations which relate the coupling coef
ficients in (1), (2), or (3). In Sec. TI we derive these 
recursion relations algebraically from certain sum 
rules satisfied by these coefficients. While this deriva
tion is the shortest available, it is somewhat remote 
from the definitions of the coefficients. Thus in the Ap
pendix, we supply an alternate derivation starting 
directly from the basic definitions of angular momentum 
coupling. In Sec. TIl we then derive the algorithm for 
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generating the strings of 3j- and 6j-coefficients (1), (2), 
and (3). In Sec. IV we demonstrate numerically the ac
curacy and efficiency of the algorithm. Computer 
programs for the recursive evaluation of 3j- and 6j-co
efficients will be made available. 3 

Beside being most advantageous for numerical evalua
tions, the recursion equations serve to make the func
tional properties of the angular momentum coupling co
efficients more transparent. In a second article fol
lowing this one,4 it is shown that the recursion equations 
for 3j- and 6j-coefficients can be solved using a discrete 
analog of the uniform WKB approximation to yield simple 
analytic apprOXimate expressions for individual coupling 
coefficients, which are quite accurate even for moderate 
quantum numbers. 

II. RECURSION RELATIONSHIPS FOR 3j· AND 
6j·COEFFICIENTS 

The recursion relationships which connect the angular 
momentum coupling coefficients in (1), (2), and (3) had 
been previously reported. Condon and Shortley 5 derived 
the recursion relationships for the 3j-coefficients in (0, 
and Rose6 presented the recursion relationship for the 
3j-coefficients in (2). In both instances the recursion 
relationships were obtained from the interpretation of 
the strings of 3j-coefficients in (1) and (2) as the eigen
vectors of certain angular momentum operators. Condon 
and Shortley, and subsequently Rose, suggested that 
these recursion equations might help evaluate the 3j-co
efficients. The recursion equation for the 6j-coefficients 
in (3) have been given by Yutsis et al. 7 In an appendix 
following this paper, we show that this recursion equa
tion, too, originates from an eigenvalue problem. In
stead of now just quoting the recursion equations of 
Condon and Shortley, Rose and Yutsis et al., we present 
a unified derivation for these three recursion equations. 
This derivation starts off from three basic sum rules 
which hold for 3j- and 6j-coefficients. 

Let us first consider the 3j-coefficients in (1). For the 
3j-coefficients there is an identity 8 
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(4) 

For ll=~' l2=jS+ct, and m~=13 (ct,tl=±~) this identity 
reduces to the three term recursion relationship 

J2+1/2 

~ 
'S=J2-l/2 

(4') 

which connects the 3j-coefficients 

(il 
• I 

js + ct ) (il 
j2 js ) 12- 2" 

ml m 2 +13 ms -13 
, 

ml m 2 ms 

and 

Cl 
j2 + ~ js + ct ) 

ml m 2+ 13 ms - 13 • 

The factors multiplying these 3j-coefficients in Eq. (4') 
are 3j- and 6j-coefficients containing a quantum number 
~ for which closed expressions exist. Equation (4') with 
ct = - ~ and 13 = - ~ is identical with a recursion relation
ship previously derived by Louck9 starting from the 
Clebsch-Gordan series. 

Recursion relationships (5) properly combined give a 
recursion relationship which only connects 3j-coef
ficients belonging to (1). To be specific, the recursion 
relationships to be combined are 

(- 1{ms (2j2 + 1) Us - ms + 1]1/2 (~l ~: ~J 
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(5b) 

and 

(5c) 

Inserting (5b) and (5c) into (5a) gives a recursion rela
tionship for 3j-coefficients which may be written 

(6a) 

where 

AUl) = U/ - U2 - jS)2}1/2 [(j2 + js + 1)2 - j12]l/2 U12 - m12)1/2, 

(6b) 

BUl) 

= - (2jl + 1)U2U2 + l)ml - jsUs + 1)ml - jlUl + 1)(m3 - m 2)}· 

(6c) 

Recursion equation (6), it will be shown below, together 
with the normalization condition 

L (2jl + 1) (jl j2 j3) 2 = 1, 
i l m 1 m 2 ms 

is sufficient to determine except for an overall phase 
factor the values of the 3j-coefficients in (1), 

(7) 

There exists yet another recursion equation for 3j-co
efficients, which relates 3j-coefficients with different 
magnetic quantum numbers, and which allows the evalu
ation of the elements in (2). This recursion equation is 
derived in much the same manner as Eq. (6). Hence, 
we may only outline this derivation. It had already been 
pointed out by Edmondslo that the identity 

(8) 

l/J",=ll +l2+ lS+ m l- m S- m , 

provides a suitable starting point for the derivation of 
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recursion relationships for 3j-coefficients. Setting II 
=i. l2=jS+{3. and l3=j2+a (a,f:!=±!) gives the three 
term recursion relationship 

= "'fl/2 

"'."'3-1/2 

which connects the 3j-coefficients 

(8') 

The factors multiplying these 3j-coefficients are again 
3j- and 6j-coefficients containing a quantum number i 
for which closed expressions exist. From (8') can then 
be obtained by a proper combination of three recursion 
relationships the following equation which relates the 
3j-coefficients belonging to (2) 

(9a) 

where 

C(m2) = [(;2 - m 2 + 1)02 + m2)0s + ms + l)(js - m s)]1/2, 

(9b) 

D(m2) = j202 + 1) + j 30s + 1) - j101 + 1) + 2m2m S' (9c) 

It will be shown that Eq. (9) together with the normaliza
tion condition 

If one sets 1f=i. l~=js+f:I. and l~=j2+a (a,f:I=±i), 
the sum over ~ reduces to two terms with X = 11 ±-i. One 
arrives then at the recursion relationship 

x {i js + (3 j3} 
l2 II ~ 

(11') 

which connects the 6j-coefficients 

{ 
jl j2 + a j3 + f3} {jl j2 js} and 

II - i l2 ls '11 l2 l3 

The factors in this recursion relationship consist of 
6j-coefficients with a quantum number -i for which 
closed expressions exist. Proper combination of three 
recursion relationships (11') yields 

(12a) 

'where 

E(1)={[j/- 02 - jS)2][(;2+jS + 1)2 - jI2][h2- (l2 -lS)2] 

x[(l2+ls+1)2_jI2]}1/2, (12b) 

F(jl) = (2j1 + 1) {j101 + 1)[ - jl(j1 + 1) + j202 + 1) + j303 + 1)] 

+ 12(l2 + 1)[h(jl + 1) + j2(j2 + 1) - j30s + 1)] 

+ ls(ls + I)U101 + 1) - j20 2 + 1) + js0s + 1)] 

- 2it01 + l)ll(ll + IH· 

L (2j1 + 1) (jl j2 jS)2 -1 
"'2 m 1 m 2 -m1-m2 

(10) Recursion equation (12) together with the normalization 
condition 

is sufficient to determine except for an overall phase 
factor the values of the 3j-coefficients in (2). 

The recursion equation which selectively connects the 
6j-coefficients belonging to the set (3) is derived in a 
manner strikingly similar to the recursion equations (6) 
and (9) above. Now the Biedenharn-Elliot identity 11 

serves as the starting pOint: 
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(13') 

is suffiCient to determine expect for an overall phase 
factor the 6j-coefficients in (3), 

Racah11 had pOinted out that his explicit formula is 
not the only pathway for an evaluation of 6j-coefficients, 
but that instead the recursion equation (11') equally well 
furnishes an approach to the evaluation of 6j-coefficients. 
Racah and Fano noted that the coefficients in these re
cursion equations consisting of 6j-coefficients with 
quantum numbers ~ are determined through the unitary 
property 

L: (2jl+1)(2l1+1) {jl j2 js} {j~ j2 js} =0", (13) 
11 II 12 ls II l2 l3 1 1 
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-2 -2 
-4 -4 
-6 -6 
-8 -8 

-10 -10 
-12 -12 

FIG. 1. Functional behavior of 3j-coefficientsj(it) =dh 18 8~ 
(48~it ~ 128). The evaluation ofj(it) followed the recursion 
algorithm described in Sec. 3. The domain Ofj(jl) can be di
vided into a classical and two nonclassical regions (Ref. 4). 
In the classical regionj(h) oscillates with slowly varying 
amplitude; in the nonclassical regions Ij(it) I monotonically 
decays to zero. 

(14) 

Hence, the very interesting conclusion can be drawn that 
the identities (13), (14), and (11) completely determine 
the 6j-coefficients save an overall phase factor. 11 

The similarity between the recursion equations (6) and 
(9) for 3j-coefficients and the recursion equation (12) for 
6j-coefficients as well as the similarity between the 

16 
14 
12 
10 
8 
6 
4 

-6 
-8 

-10 
-12 
-14 

10' _(112 48 72 ) 
-40"", 40-m2 

"I (I ~ r ~ I~ r ",' 'I:' :~ 

I I XI 'I \ , Xv I) I I -~~ 
I 1."4J l I I -12 
Lrr I I II -----J -14 
I I 1 1 

FIG. 2. Functional behavior of the 3j-coefficients g(mi) 
= (~lij ~~ 4~.) (- 32 ~ m2 ~ 48). The evaluation of g(m2) followed 
the recursion algorithm described in Sec. 3. The domain of 
g(m2) can be divided into a classical region and two nonclassi
cal regions (Ref. 4). In the classical region g(m2) oscillates 
with slowly varying amplitude; in the nonclassical regions 
19(m2) I monotonically decays to zero. 
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corresponding derivations is explained through the 
existence of an asymptotic relationship between 3j- and 
6j-coefficients 12: 

( jl ja jS)=lim(_ltC2Jl [21
l

+2R+1]1/2 
m 1 m2 ms R~" 

(15) 

where ls-12=m1, 11-ls=m2, and l2-l1=mS. In fact, 
Eq. (6) follOWS from Eq. (12) by taking the asymptotic 
limit letting ll' 12 , and ls go to infinity, whereas Eq. (9) 
follows from Eq. (12) by letting j1' j2' and ls go to in
finity. We have chosen the series of 3j- and 6j-coef
ficients in Figs. 1, 2, and 3 to be related through the 
asymptotic relationship (15) as may be readily checked. 
The similarity of these diagrams is therefore an il
lustration for Eq. (15). 

III. ALGORITHM FOR THE RECURSIVE 
EVALUATION OF;3j- AND 6j-COEFFICIENTS 

The three-term recursion equations for 3j- and 6j-co
efficients (6), (9), and (12) have been derived and it will 
now be shown how the Wigner and Racah coefficients can 
be determined from these recursion equations. 

To describe the proposed recursive algorithm, we 
will first consider the evaluation of the string of 3j-co
efficients 

f(j) _(j1 j2 js) . .:S'.:S' 
1 - m m m ' 11 min 11 11 max· 

1 2 S 

( 1') 

The range of j1 is finite, the smallest and largest values 
being 

j1mln=max{Jj2-jsl, Imll} and jlmax=j2+jS· 

Once proper starting values have been given, the re-

16 
14 
12 

10 
8 
6 
4 
2 

104,1 j 48 801 
112 12072 ( 

FIg. 3. Functional behavior of the 6j-coefficients h(jt) 
={11~ 1~8 m (48 ~it ~ 128). The evaluation of h(it) followed 
the recursion algorithm described in Sec. 3. The domain of 
h(jt) can be divided into a classical and two nonclassical re
gions (Ref. 4). In the classical region h( it) oscillates with 
slowly varying amplitude; in the nonclassical regions Ih(it) I 
monotonically decays to zero. 
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cursive evaluation of allj(1) according to 

hAUl + l)jU1 + 1) + B(1)jU1) + U1 + 1)AU1)jU1 - 1) =0 

can be performed. But, one should note that such a 
recursion procedure to generate the quantities jUl)' 

(6') 

jUl + 1), jUl + 2), ..• can be numerically stable only in 
the direction of increasing jUl)o The semiclassical ex
pressions for 3j-coefficients, 4 reveal thatjUl) de
creases rapidly to zero at the boundaries of the jl-do
main jl min and j1 max' This can also be seen from Fig. 1 
which illustrates the typical jl-dependence of 3j-coef
ficients. In order to assure numerical stability, the 
recursive evaluation should therefore proceed from the 
boundaries jl min(left recursion) and jlmax (right re
cursion) of the jl-domain towards the middle (classi
caI 4 •13) region. The classical region is defined here as 
the set of jcvalues for which there exists a classical 
angular momentum vector diagram corresponding to the 
3j-coefficient jUl)' It is within this region that the typi
cal magnitudes of the 3j-coefficients j(1) are largest. 

For the start of the recursion (6') one observes that 
AUI mIn) = 0 and AUI max + 1) = O. The recursion relation 
at the boundaries jl min and j1 max thus becomes 

BU1 min) jUlmln) + jl min AU1mln + 1) jUl min + 1) = 0 

(16) 

and 

BUl max) jUlmax) + Ulmax + I)AUlmax)jUlmax -1)=0, 

(17) 

i. e., the three term recursion (6') reduces to two 
terms. Thus, one starting value at each boundary, 
namely JUI min) and jUl max)' is sufficient to start the 
recursion (6') in each direction. 

Let us now assume that the terminal 6j-coefficient 
jU1mln) andjUlmax) have been given arbitrary values 
and used to start the recursion (6'). Thus, they are in 
error by factors cI and C2 , respectively. Applications 
of Eqs. (16) and (17) then yield the quantities c1jU1mln) 
and c2 jUl max)' Carrying the recursion further towards 
the classical regions by means of the linear recursion 
(6'), the quantities 

c i jUl min); C1 JUI ml n + 1); ... ; CI jU1 mid) (left recursion), 

c2jUImax); c2jUlmax- 1); '0'; c2jU1mld) (right recursion) 

will be generated. The common final jcvalue j1 mid for 
the recursions from left and right should lie within the 
classical j1-domain. The recursions from the left and 
from the right must, however, match at j1 = jl mid' SO 

that we have the condition cl JUI mid) = C2 JUI mId)' We 
may therefore rescale the left recursion by the factor 
c2jV1mld)/C1jU1mld)=C2 /C1 to get 

c2 JVI min); C2 jU1 ml n + 1); ... ; C2 jU1 max - 1) ; C2 jV1 max), 

(18) 

i. e., the series of 3j-coefficients in (1) off by a common 
factor c2 • To obtain the unknown C 2 , we employ the 
normalization condition (7) which yields the absolute 
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(19) 

determines the sign of c2 " Rescaling the series (18) by 
1/ c2 then gives the 6j-coefficients in (1). It has, hence, 
been shown that the recursion (6') can be started with 
arbitrarily chosen values CI jUlmln) and C2 jUl mu) to ob
tain simultaneously all 3j-coefficients in (1). 

Let us consider now the evaluation of the 3j-coef
ficients in (2), 

(m ) - (jl j2 j3) 
g 2 - m m m -m ' 

1 2 - 1 2 

by means of the recursion equation 

(2') 

C(m2 + 1) g(m2 + 1) + D(m2)g(m2) + C(m2)g(m2 -1) =0. 

(9') 

The range of allowed m2-values in (2) is finite, the 
smallest m2-value is m2mln= max{- j2' - js - mJ and the 
largest m2-value is m2 max = min{j2,j3 - m 1 }. The func
tional behavior of g(m2) resembles that of j (1) in that 
g(m2 ) in general falls off to zero at the boundaries m2min 
and m 2 max of the m2-domain (see also Fig. 2). To as
sure numerical stability, it is necessary to perform 
the recursion (9') from both ends of the m2-domain (left 
and right recursion). As was the case for (6') the 
terminal recursions contain only the two terms 

D(m2 min) g(m2m1n) + C(m2 min + 1) g(m2mln + 1) = 0, 

(20) 

(21) 

since C(m2min)=0 and C(m2max + 1)=0. Assuming ar
bitrary starting values clg(m2mln) and C2 g(m2max ), the 
recursion by means of (20), (9'), and (21), (9') yields 
the two series 

... , 

C 1 (m 2 mid) (left recursion) 

and 

C2 g(m2 mid) (right recursion) 

for some m2 mid in the classical m2-domain of the 3j-co
efficients. To assure that the matching condition 
c1 g(m2 mid) = C2 g(m2 mid) hold, the left recursion may be 
rescaled by the factor c2 g(m2mid)/Cl g(m2m1d). One then 
gets 

c2g(m2mln); c2g(m2min+l); ••• ; 

(22) 

which represents the 3j-coefficients in (2), scaled by the 
unknown factor c2 • c2 is readily determined from the 
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normalization condition (10) together with the phase 
convention 

The desired 3j-coefficients are then obtained after 
multiplying (22) by 1/c2 • 

Finally, we turn to the recursive evaluation of the 
series of the 6j-coefficients in (3) 

h(j) {j1 j2 js} . ",' ",' 
1 = 1 1 1 ,hmin~h ~hmax' 123 

(3') 

The smallest and largest jl-values are j1mlD= max{lj2 
- j3 1 , 112 -131}, and j1 max = min{j2 + j3' 12 + '3}. The 6j
coefficients h(jl) fall off to zero at the boundaries j1 min 
and jl max as can be seen from the example given in Fig. 
3 and is revealed for the general case by the semiclassi
cal expression for 6j-coefficients. 4,11 Hence, the 
recursion 

jl E(j1 + 1) h(j1 + 1) + F(j1) h(j1) + (j1 + 1) E(jl) h(jl - 1) = 0 

(12') 

which connects all possible h(j1) should again proceed 
simultaneously from the boundaries j1 min (left recursion) 
and j1 max (right recursion) towards the middle jl-do
main. For the recursions at the boundaries we have 
E(j1mln)=0 and E(jlmax + 1)=0. Hence 

F(j1 min) h(j1 min) + j1 mln E (j1 min + 1) h(j1 min + 1)'= 0 (24) 

and 

F(jl max) h(jl max) + (jl max + 1) E(jl max) h(jl max - 1) = 0 (25) 

can be generated recurSively for jl mid being chosen to 
lie within the classical 4,13 jl-domain. The classical do
main of 6j-coefficients is the domain of all quantum 
numbers for which there exists a classical angular 
momentum vector tetrahedron corresponding to the 6j
coefficient. Within this domain, typical magnitudes of 
the 6j-coefficients are largest. The matching condition 
cl h(j1 mid) = C2 h(jl mid) is satisfied if the left recursion is 
rescaled by the factor c2 h(jl mld)lc l h(j1 mid) which gives 

c2 h(jl min); C2 h(j1 min + 1); ... ; C2 h(j1 m3}( - 1); C2 h(ji max)' 

c2 is determined from the normalization condition (13') 
together with the phase convention 

sgn {jl j2 j3} = (_ 1)12+13+ 12+ 13, (27) 
11 12 13 

so that finally all 6j-coefficients in (3) are evaluated. 

IV. ACCURACY AND EFFICIENCY OF 
RECURSIVE ALGORITHM 

We would like to demonstrate now our claim that the 
recursive algorithm for the evaluation of 3j- and 6j-co
efficients is numerically accurate for small and large 
quantum numbers and, in general, more efficient than 
existing algorithms based on the explicit expressions 
for these coefficients given by Wigner and Racah. As 
far as numerical effort is concerned, the advantageous 
character of a recursive evaluation is quite obvious. To 
obtain the coupling coefficients in (1), (2), and (3), es-
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sentially only the series A(n), B(n) or C(n), D(n) or E(n), 
F(n), respectively, which enter as coefficients the 
recursion equations (6), (g), and (12), need to be 
calculated. 

The fact that the recursive algorithm evaluates a 
whole set of coupling coefficients is often an advantage, 
for in many problems of angular momentum coupling 
whole sets of coupling coeffiCients like (1), (2), or (3) 
enter. To give an example we may turn to the evaluation 
of gj-coefficients, which are given through the expansion 

1 
jl j2 jS} {H 
~4 ~5 ~6 = 6 (_ 1)2H j3 
17 1s 19 H 

(28) 

Evidently three strings of 6j-coefficients are needed in 
the course of evaluating this expansion, namely 

{~ j1 jg} (3a) 
js j2 ' 

{f 
j2 j6 } (3b) 
j" js ' 

{H jg j1} 
j7 j4 js ' 

(3c) 

Furthermore, to obtain the N gj-coefficients for all 
allowed j3-quantum numbers, it is suffiCient to evaluate 
(3b) and (3c) once and (3a) for aU N allowed j3 values. 
Hence, to determine the values of 9j-coefficients for all 
j3' only N + 2 6j-recursions have to be performed. These 
considerations exemplify how strings of coupling co
efficients like (1), (2), and (3) naturally enter into the 
problems of angular momentum coupling. 

To answer the important question about the numerical 
accuracy of the proposed algorithm, a comparison be
tween recursively evaluated coupling coefficients and 
tabulated values of these coefficients suggests itself. 
The exact representation of 3j- and 6j-coefficients in 
terms of prime number factors, as given in the table of 
Rotenberg et a1. 14 provides the accurate values for these 
coefficients. In Tables I, II, and III we present a com
parison between 3j- and 6j-coefficients generated by 
recursion and those obtained from the tabulation of 
Rotenberg et al. As can be seen, agreement is found for 
essentially all Significant figures provided by the com
puter representation of numerical constants (i. e., 16 
significant digits in the double precision mode on a IBM 
360/91). 

Perhaps more important is the fact that the recursive 
algorithm allows the evaluation of coupling coefficients 
with very large quantum numbers, thus enlarging the 
realm of coupling coefficients accessible to numerical 
methods. Since no tabulated values of large quantum 
number coupling coefficients eXist, the accuracy of the 
recursive algorithm must be demonstrated through a 
test of its numerical stability. This has been done by 
carrying out two simultaneous evaluations of 6j-coef
ficients for large quantum numbers, the results of which 
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TABLE I. Accuracy of recursively evaluated 3j-coefficients 
(Ll JH lH). 
Ll Values of 3j-coefficientsa 

1 
0.278886 675 511 3585 (0) I 
0.278 886 675 511 3])86 (0) II 

2 
-0.9534625892455920 (-1) I 
- 9. 953462 589 245 5920 (-1) II 

3 
- O. 674 199 862463 2420 (-1) I 
- O. 674 199 862463 2420 (-1) II 

4 
0.153 311 035 167 9666 (0) I 
0.153 311 035 167 9666 (0) II 

5 
- 0.156 446 554 693 6860 (0) I 
- 0.156446 554 693 6859 (0) II 

6 
0.109 945041 215 6550 (0) I 
0.109 945041 215 6550 {OJ II 

7 
- O. 553623569313 1718 (-1) I 
-0.5536235693131718 (-1) II 

8 
0.179 983 545113 7785 (-I) I 
0.1799835451137785 (-1) II 

aI: Rotenberg et al.; II: This paper. 

are presented in Table IV. One of the calculations was 
done in single precision mode (IBM 360/91) which pro
vides 6 significant digits for numerical constants, and 
the other calculations used double precision with 16 
significant digits. Numerical stability is demonstrated 

TABLE II. Accuracy of recursively evaluated 3j-coefficients 
(r 15

/
2 !V-i)· 

M Values of 3j-coefficientsa 

-15/2 
0.209 158 973 288 6152 (-1) I 
0.209158973 2886155 (-1) II 

-13/2 
0.853 756 555321 5250 (-1) I 
0.853 756 555321 5260 (-1) II 

-11/2 
0.908295370 868 6920 (-1) I 
0.908 295370 868 6930 (-1) II 

-9/2 
- O. 389 054 377 846 4993 (-1) I 
-0.389054 377 8464998 (-1) II 

-7/2 
-0.6637349701656800 (-1) I 
- O. 663 734 970 1656810 (-1) II 

- 5/2 
- O. 649 524 040 5283890 (-1) I 
- O. 649 524 040 5283900 (-1) II 

-3/2 - O. 215 894 310 5954037 (-1) I 
- O. 215 894 310 5954036 (-1) II 

-1/2 - 0.778 912 711 785 2390 (-1) I 
-0.7789127117852390 (-1) II 

1/2 
0.359764371 059 5433 (-1) I 
0.359 764 371 059 5431 (- 1) II 

3/2 
0.547 301 500021 2632 (-1) I 
0.547301 500021 2631 (-1) II 

5/2 
- O. 759 678 665 956 7610 (-1) I 
- O. 759 678 665 956 7610 (-1) II 

7/2 - O. 219224445 539 8920 (-1) I 
- O. 219224445 539 8921 (-1) II 

9/2 
0.101 167 744 280 7722 (0) I 
0.101 167 744 280 7721 (0) II 

11/2 0.734 825 726 244 7190 (-1) I 
0.734 825 726 244 7190 (-1) II 

aRotenberg et al.; II: This work. 
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TABLE III. Accuracy of recursively evaluated 6j-coefficients 

{13t! 15~2 15}J· 

Ll Values of 6j-coefficientsa 

1 
0.349090 513 837 3299 (-1) I 
0.349090 513 837 3284 (-1) II 

2 
-0.3743025039659791 (-1) I 
-0.3743025039659775 (-1) II 

3 
0.1890866390959559 (-1) I 
0.189086 6390959551 (-1) II 

4 
0.734 244 825492 8642 (- 2) I 
0.734 244 8254928610 (- 2) II 

5 
-0.2358935185081794 (-1) I 
-0.2358935185081783 (-1) II 

6 
0.191 347 695 521 5436 (-1) I 
0.191 347 695 521 5427 (-1) II 

7 
0.128 801 739 7724172 (- 2) I 
0.1288017397724175 (-2) II 

8 
- 0.193 001 836 629 0526 (-1) I 
-0.1930018366290531 (-1) II 

aI: Rotenberg et al.; II. This paper. 

since the single precision calculation agrees with the 
double precision calculation within its full range of 
significant figures, as is shown for one example in 
Table IV. It is remarkable that even the small coef
ficients near the ends of the range are found with the 
maximum possible relative accuracy. 

APPENDIX: DERIVATION OF RECURSION 
EQUATION FOR 6j-COEFFICIENTS AS SOLUTIONS 
TO AN EIGENVALUE PROBLEM 

The remarkable resemblance between the series of 

TABLE IV. Accuracy of recursively evaluated 6j-coefficients 
{Ii! li~ m. 
LI Values of 6j-coefficientsa 

48 
0.161 1825 (- 8) I 
0.161 1825 (- 8) II 

56 
0.9490981 (-4) I 
0.9490977 (-4) II 

64 
0.964 1119 (- 3) I 
0.9641123 (-3) II 

72 
0.9880543 (-3) I 
0.9880543 (-3) II 

80 0.9199395 (- 3) I 
0.919 9396 (- 3) II 

88 
0.918 3130 (- 3) I 
0.9183132 (-3) II 

96 
0.3325452 (-3) I 
0.332 5446 (- 3) II 

104 
0.3220624 (-3) I 
0.322 0624 (- 3) II 

112 
0.1153951 (- 5) I 
0.1153951 (- 5) II 

120 
0.8350757 (-10) I 
0.8350761 (-10) II 

128 0.119 3770 (-16) I 
0.119 3771 (-16) II 

a I: double precision; II: single precision. 
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FIG. 4. Compariso~ of the functional behavior of the 6j
coefficients h(it) ={l~ 1~8 m (48sit s 128) evaluated through the 
recursion algorithm described in Sec. 3. The largest allowed 
lcquantum number is llmax"'120. The diagram shows that 
II max -ll counts the nodes of h(it): (a) llmu-ll = 0 (b) II max -ll 
=5; (c) llmax-ll=10. 

3j- and 6j-coefficients in Figs. 1,2,3, and bound state 
eigenfunctions may not have escaped the readers' atten
tion. To carry further a comparison between angular 
momentum coupling coefficients and eigensolutions of 
bound state problems we present in Fig. 4 the series of 
6j-coefficients 

[(2j1 + 1)(211 + 1)]1/2 {{1 {2 {3 t, j1mln ~j1 ~j1max' 
1 2 3 \ 

for different ll-values. j1 mln= max{lj2 - j31, Il2 -l31} 
and j1 max = min{j2 + j3' l2 + 1J are the smallest and largest 
values j1 can assume in order for the 6j-coefficients not 
to vanish. It can be seen from Fig. 4 that 11 takes on the 
character of a quantum number which counts the nodes 
11 max -11 of the series (1 1 max = min{j2 + 13, j3 + 13})' What 
is the origin of this particular behavior of the coupling 
coefficients? The answer to this question is that 3j- and 
6j-coefficients are by definition components of eigen
vectors to certain eigenvalue problems. The coupling 
coefficients in Figs. 1-4 just represent those eigen
vectors. 
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That 3j-coefficients can be obtained through the 
diagonalization of certain angular momentum operators 
has been known since the early days of quantum me
chanics. Hence, this will not be demonstrated here, but 
we may refer the reader to Refs. 5 and 6. However, we 
will show in the following which eigenvalue problem de
fines 6j-coefficients, and will prove that the recursion 
equations for 6j-coefficients are a consequence of this 
eigenvalue problem. The main reason for this algebraic 
detour is to convince the reader that the recursion equa
tions derived above do indeed follow directly from the 
definition of the 6-j coefficients. 

Let us consider a system composed of four angular 
momenta J 2, J3'~' and L3 such that J 2 + J3 + L2 + L3 = 0. 
This system may be described by two different zero 
total angular momentum states: 

1 (j2,j3)(12' 13)j1) = L (- 1)j1-m [2j1 + 1]~1/2 
m 

and 

1(j2' 13)(12,j3)11) = L (_1)11- m [211 + 1]~1/2 
m 

x 1 (j2' 13)11m ) 1 (l2' j3)11 - m). 

The transformation matrix element «(j2' j3)(12, 13)j11 
x (j2' 13)(12, j3)11) defines then the 6j-coefficient 

«j2,j3)(12' 13)j11 (j2' 13)(12,j3)11) 

= [(2j1 + 1)(211 + 1)]1/2 {JZ'11 j2 j3} 
12 13 • 

(AI) 

(A2) 

(A3) 

It is a simple exercise in angular momentum algebra to 
show that this definition is in agreement with the more 
conventional definition of 6j-coefficients in terms of 3j
coefficients. 1o 1 (j2' j3)(12, 13)j1) and 102,13)(12, j3)11) are 
both eigenstates of the angular momentum operators 
J~, ~, L~, L;, but only the first state is also an eigen
function of J1

2 = (J2 + J3)2, whereas only the latter is an 
eigenstate of L12 = (J2 + L3)2. From elementary principles 
of linear algebra it then follows that the columns of 
«(j2,j3)(12, 13)j11 (j2' 13)(l2,j3)11) are the eigenvectors of the 
operator L~ in the 1 (j2,j3)(12' 13)j1)-basis. 

Let us evaluate L~ in this basis, We first notice that 
[J2 + J3 + L2 + L3, L~] = 0, hence, the application of L~ 
does not affect the total angular momentum state, We 
may then express L~ through operators whose action on 
the intermediate states 1 (j2,j3)j1m) and 1 (l2' 13)j1 - m) in 
(1) are known: 

Li = ~ + L; + J2~L3+ + J2+L3~ + 2J2.L36' 

We have obviously 

(~+ L;) 1 (j2,j3)(12' 13)j1) 

= U2(j2 + 1) + 13(l3 + 1)]1 (j2' j3)(l2' Z3)j1)' 

K. Schulten and R.G. Gordon 
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+ <02' ja)jlm IJ2+ «12, 13)jl - miLs-

+ 2«j2,jg)jlm IJ2• «12, IsHl - m IL3.}. (A5) 

The operators J2_L3.,J2+L3_ and J 2.L3• only couple to 
states 1 (j2,js)jfm + I) 1 (1 2 , IsH~ - m - 1», I (j2,jS)j{m - I) 
xI (12' ls)jf - m + 1), and 1 (j2' jsmm) 1 (12, ls)jf - m) where jf 
=jl ± 1, 0 and j~ =jl ± 1, 0. 15 But, in order that the state 
(5) carries zero total angular momentum all terms with 
jf *-if must cancel out, and hence may be disregarded in 
the following calculation. The matrix elements ({j2' 
jS)jlm IJ2.1 V2,ja)jim '), «12, IsHl - m 1Ls.1 (12, 13m - m '), 
etc. all split in orientation independent factors v1l1J2 l1ji) 
and (jlIIL311 jf) and m-dependent factors (Wigner-Eckart 
theorem). The m-dependent factors may be obtained 
from Ref. 15. It should further be noted that the opera
tors L 3s' L 3• operate on the second angular momentum 
la in 1 (l2' IS)jl - m), whereas the operators J 2s' J2• oper
ate on the first angular momentum j2 in 1 (j2' ja)jlm). 
This makes it necessary5 to give negative values to the 
off-diagonal elements VlllLalljl± I). We obtain then from 
(5) the expression 

i 1-'" 

~ [~jl ~ 1]l!2 {- VI - II1J21Iil) (jl -lIILslljl) 

x [ - VI - m - I)Vl - m) ({j2,jsHl - 1 m + 11 «12• la)jl- 1 

-m-ll 

- VI + m){jl + m - 1)«j2,ja)jl - 1 m - 11 «(l2' 13)jl -1 

-m+ll 

These matrix elements show that L~ is a symmetric, 
tridiagonal matrix. L~ is readily diagonalized and must 
have real, positive eigenvalues. However, such a 
diagonalization procedure would provide redundant re
sults (eigenvectors and eigenvalues), since the eigen
values of L~ are known to be 11(11 + 1) with II = II max - n, 
n=O, 1,2, .... Hence, it is sufficient to solve the 
system of homogeneous equations 

(All) 

Because of the tridiagonal form of L~, this leads to 
three-term recursion equations for the components of 
x. These equations are identical with the recursion 
equations derived above for 6j-coefficients. The solution 
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+ 2V~ - m 2) (Va,js)jl - 1 m 1«12, lS)jl - 1 - m I] 
+ (jlI1Jalljl) (jIll Lslljl) 

x WI + m + 1){jl - m) «j2,j3)jl m + 11 «la, Is)iI - m - 11 

+ VI + m)Vl - m + 1) (V2,ja)jl m -11 ((l2' ls)jl - m + 11 

-2m2 (Va,ja)jl ml((l2,ls)jl -mil 
- (jl + IIIJ2I1jl) (jl + lllLslljl) 

x [- {jl +m + 1){jl +m + 2)«j2,ja)jl + 1 m + 11 

x «l2' lS)jl + 1 - m - 11 

- (jl-m + I)Vl- m + 2) ({j2,j3)jl + 1 m -11 
)( «la, 13)jl + 1 - m + 11 

+ 2[(jl + 1)2 - m 2
] «j2,j3)jl + 1 m I ({l2' ls)jl + 1 - m 1 ]}. 

(A6) 
Collecting terms with equal magnetic quantum numbers 
leads to the cancellation of all m-dependent prefactors in 
the sum, except for the phase (-It"'. Carrying out the 
m-summation gives then 

2jl[(2jl + 1)(2jl- 1)]1/a UI-1I1J21Iil)(jl-1I1Lslljl) 

x (V2,j3)(l2' IsHl - 11 

- 2jhl + 1) VI II J 2 I iiI) <illl Lslljl) ({j2,jS)(l2' IsHII 

+ 2Vl + 1)[(2jl + 1)(2jl + 3)]1/2 

X VI + 111 J 2l1jl) (jl + 111 Lallil) <02,js)(12' lS)jl + 11 (A 7) 

and, finally, with the explicit algebraic expression for 
VIII J211jD and <illl Lsllm 5,15 

(A8) 

of these recursion equations therefore corresponds 
directly to the solution of the eigenvalue problem (11). 

*Supported by the National Science Foundation. 
tCurrent address: Max Planck Institut fur biophysikalische 
Chemie, Gottlngen, Germany. 
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Semiclassical approximations to 3j- and 6j-coefficients for 
quantum-mechanical coupling of angular momenta * 

Klaus Schultent and Roy G. Gordon 

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138 
(Received 21 April 1975) 

The coupling of angular momenta is studied using quantum mechanics in the limit of large quantum 
numbers (semiclassical limit). Uniformly valid semiclassical expressions are derived for the 3j (Wigner) 
coefficients coupling two angular momenta, and for the 6j (Racah) coefficients coupling three angular 
momenta. In three limiting cases our new expressions reduce to those conjectured by Ponzano and Regge. 
The derivation involves solving the recursion relations satisfied by these coefficients, by a discrete analog of 
the WKB method. Terms of the order of the inverse square of the quantum numbers are neglected in the 
derivation, so that the results should be increasingly accurate for larger angular momenta. Numerical 
results confirm this asymptotic convergence. Moreover, the results are of a useful accuracy even at small 
quantum numbers. 

I. INTRODUCTION 

3j- and 6j-coefficients describe the quantum mechani
cal coupling of two and three angular momentum states, 
respectively. Classically this coupling corresponds to 
the addition of angular momentum vectors. For larger 
angular momenta the classical concept of vector addi
tion becomes increasingly valid; so that in the limit of 
very large quantum numbers 3j- and 6j-coefficients 
should have an interpretation in terms of claSSical vec
tor diagrams (Figs. la, 2a, 3a). One can expect that 
in this semiclassical limit 3j- and 6j-coefficients can 
be expressed as simple functions of the geometric 
variables which describe the classical angular momen
tum addition. Such a functional relationship between 
angular momentum coupling coefficients and classical 
vector diagrams has been suggested, on the basis of 
heuristic arguments, by Ponzano and Hegge. l It is one 
aim of this paper to give a rigorous derivation for the 
expressions of Ponzano and Hegge as the asymptotic 
(WKB) solutions of the recursion equations which define 
3j- and 6j-coefficients. 

For certain quantum mechanically allowed 3j- and 6j
coeffiCients, classical vector diagrams do not exist. 
For example, the classical angular momenta associated 
with some 6j-coefficients cannot be connected to give a 
vector tetrahedron as in Fig. 3a, and such cases are 
called classically forbidden. Thus, the quantum number 
domains of the angular momentum coupling coefficients 
are to be separated into classically allowed and classi
cally forbidden regions. Interestingly enough, the 
algebraic definition of the geometric variables (volume 
and dihedral angles of the 6j-tetrahedron, etc.) can be 
continued from the classical domain of quantum numbers 
to the nonclassical domains. Accordingly, Ponzano and 
Hegge stated three different expressions for 3j- and 6j
coefficients valid in either the classical domain, the 
nonclassical domain or at the boundary between these 
two domains. These expressions do not, however, 
smoothly connect with each other, and lacking a sys
tematic derivation of their results Ponzano and Hegge 
were not able to correct this deficiency. 

Miller,2 starting from the correspondence relations of 
claSSical and quantum mechanics, recently derived a 
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semiclassical expression for 3j-coefficients restricted 
to the claSSically allowed domain of quantum numbers. 
Miller's result is identical with the corresponding ex
pression of Ponzano and Hegge giving, thus, support to 
the supposition that Ponzano and Hegge's formulas are 
amenable to a rigorous derivation. We have, in fact, 
found such derivation and present it here. The route we 
have taken for this derivation will be outlined now. 

One may recall that semiclassical expressions for 
quantum mechanical wavefunctions can be determined as 
asymptotic solutions of the Schrodinger second order 
differential equation by means of the WKB approxima
tion. The 3j- and 6j-coefficients are the solutions of 
certain linear recursion equations which, as we have 
shown, 3 provide the most efficient and stable algorithm 
for their evaluation even for very large quantum num
bers. The important role of these recursion equations 
in determining, except for overall factors, the angular 
momentum coupling coefficients had been well known 
in the early days of quantum mechaniCS 4 but sank into 
oblivion after the advent of group theory and the fol
lowing derivation of closed expressions of 3j- and 6j
coefficients by Wigner5 and Hacah. 6 The three term 
recursion equations can be formally written as second 
order difference equations which are closely related to 
the second order differential equations which result 
from the Schrodinger equation for wavefunctions. In 
view of this relationship, it seems reasonable to attempt 
a derivation of the semiclassical formulas for 3j- and 
6j-coefficients as the asymptotic (WKB) solutions of 
their recursion equations. To this purpose we extended 
the WKB theory from differential to difference equations 
and this yields then the semiclassical expressions of 
Ponzano and Hegge. 

The recursion equations determine the angular mo
mentum coupling coefficients over a discrete domain of 
quantum numbers. ClaSSical angular momenta vary 
over a continuous domain of values. According to the 
correspondence of classical and quantum mechanics 
one expects that the semiclassical expressions of 3j
and 6j-coefficients can be defined over continuous do
mains also. In fact, we have found that the asymptotic 
solutions of the 3j- and 6j-recursion equations viewed 
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as functions of continuous variables obey asymptotically 
certain differential equations. Hence, the semiclassical 
3j- and 6j-coefficients can also be understood as the 
WKB solutions of these second order differential equa
tions in order to account for the continuous variation of 
the angular momenta in the semiclassical limit. If one 
employs the uniform WKB approximation to these dif
ferential equations, one obtains the 3j- and 6j-coef
ficients in terms of Airy function formulas which are 
uniformly valid over the entire domain of quantum num
bers and, thus, present considerable improvement in 
accuracy, over the expressions given by Ponzano and 
Hegge. 

In Sec. 2 we will present the recursion equations of 
3j- and 6j-coefficients, and show that in the semiclassi
cal limit these equations are connected algebraically 
with classical vector diagrams. In Sec. 3 we derive the 
WKB solutions for second order difference equations, 
and demonstrate that these solutions also asymptotically 
satisfy associated differential equations. In Sec. 4 we 
apply the WKB approximation to obtain the semiclassi
cal 3j-coefficients in analytic formo In Sec. 5 these 
calculations are repeated to derive the semiclassical 
6j-coefficients. Finally, we compare in Sec. 6 the exact 
and the semiclassical values of 3j- and 6j-coefficients 
and demonstrate their convergence for large quantum 
numbers. 

II. SEMICLASSICAL RECURSION EQUATIONS FOR 
3j-COEFFICIENTS 

The Wigner 3j-coefficients define the algebra of the 
quantum mechanical addition of angular momenta. 7 For 
a classical mechanical system with two internal angular 
momenta J 2 and J 3 the resulting total angular momentum 
is uniquely determined as J 1 = J2 + J 3 • Quantum mechani
cally, it is not possible to specify for the angular mo
menta J2 and J 3 simultaneously all three Cartesian vec
tor components, but at most one component. If the z
components m 2 and m3 are thought to be specified the 
system is said to be prepared in the internal angular 
momentum state Ij2m2) I j3m3)' The relative orientation 
of the angular momenta J2 and J3 in the x, y plane, mea
sured by an angle 111 is then necessarily undetermined, 
each angle 111 being equally likely. Hence, the total 
angular momentum I J11 can assume a variety of values 
depending on the relative orientations 111 of J 2 and J 3. 
This situation is depicted by the classical vector 
diagram in Fig. la. 

The system under consideration may also be prepared 
in a particular total angular momentum state I (j2,j3)j1ml)' 
For a system prepared in such a fashion the components 
of the angular momenta J 2 and J 3 have fixed projections 
along J1. The remaining components of J2 and J 3, per
pendicular to J1, are then necessarily undetermined. 
This situation is illustrated by the classical vector 
diagram in Fig. 2a. In particular, the z-components of 
J2 and J 3 can take on a variety of values, depending on 
the orientation 8 1 of J2 and J 3 in a plane perpendicular 
to J1. Because of the randomness of the orientations of 
J2 and J 3, each angle 8 1 is equally likely. 
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FIG. 1. The series of 3j-coefficients (~~ ~2. ~3), h min"'j! 
'" h max, in (c) and the corresponding mamfoid of classical 
angular momentum vector diagrams J!+J2+J3 =O (Jj=h 
+ ~, Jje= ml) generated by rotation around the shaded circle 
in (a). The quantum mechanical probability distribution 
(2h + 1)~! ~2 :;)2 for the occurrence of the classical vector 
diagrams! in

2 (a~ are compared in (b) with Wigner's semiclassi
cal estimate (2j!+1)/4'1rA. 
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:s ma max, in (c) and the corresponding manifold of classical 
angular momentum vector diagrams J1+Ja+J3 =O (J,=h+1, 
J,.=m,) generated by rotation around the shaded circle in 
(a). The quantum mechanical probability distribution 
(2it + 1)(;;1 ~~ ~.) a for the occurrence of the classical vector 
diagrams in (a) are compared in (b) with Wigner's semiclassi
cal estimate (2j1+1)/47[A. 
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The unitary transformation T between the representa
tion I jama) I jsms> and I (j2' j3)jlml) of the system of two 
angular momenta 

I jam 2) I jsml - m 2) = L; T '"2 i l I (j2' js) jlml) (1) 
i1 

defines the 3j-coefficients 

( 
jl j2 j3) = (_ 1)J2-Js+"'1 [2jl + 1]-1/2 T", J • 

-ml m2 ml -m2 21 

(2) 

T is customarily chosen real with the phase convention 
for its row vectors adopted as by Wigner. The squares 
T J 2 of the elements of T are to be interpreted as the 
p~~ability for a system prepared in the internal angular 
momentum state 1j2m2) I jsml - m 2) to be found in the 
total angular momentum state I (j2,jS)jlml) and, vice 
versa, as the probability for a system prepared in the 
total angular momentum state I (j2,jS)jlml) to be found in 
the internal angular momentum state I j2m2) I j3ml - m 2). 
On the basis of this interpretation Wigner established an 
approximate functional expression for 3j-coefficients, 
using the classical vector diagrams in Figs. 1a and 2a. 
The probability that in Fig. 1ajl ~ IJ2+J3 1 ~jl + 1, given 
by T "'aJ1

2, can be evaluated from the fact that each rela
tive orientation 7'/1 of J2 and J 3 is equally likely. Wigner 
found 5 

T", i 2 = (2jl + 1)/41TA 
2 1 

(3) 

where A, the area of the triangle ~(Jl' J2, J 3) projected 
onto the x, y plane, is given by the Cayley determinant 

0 J/-m 1
2 J 2

2-m2
2 1 

A2= __ 1_ 
J1

2 -m1
2 0 J 3

2
- m 3

2 1 

16 J 2
2-m2

2 
J 3

2
- m 3

2 0 1 

1 1 1 0 

(4) 

Likewise, the probability for m 2 ~J2. ~ m 2 + 1 in Fig. 
2a also given by T "'2h

2 can be evaluated by assuming that 
each angle 81 is equally likely. The result is again (3). 

In Figs. lc and 2c the 3j-coefficients (!l~ 1: _%) and 
e~g ~ 10-:'°"'2) are plotted representing the quantum me
chanical probability amplitudes corresponding to the 
classical angular momentum coupling depicted by Figs. 
la and 2a. Figures 1b and 2b present the associated 
probabilities T ,"2h

2 for a comparison with the Wigner 
expression (3). One can see that Eq. (3) does not really 
approximate individual 3j-coefficients, but does provide 
an approximation for the average taken over a few 
neighboring 3j-coefficients. Our aim now is to show how 
Wigner's estimate can be refined to give more accurate 
expressions for individual 3j-coefficients. 

The 3j-coefficients in Figs. lc and 2c are determined 
except for an overall constant factor as solutions of re
cursion equations. The coupling coefficients in Fig. lc 
associated with the classical angular momentum diagram 
in Fig. la obey the recursion equationS 
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where 

a(jl) = (l(j2 + j3 + 1)2 - i l
Z][il

2 
- Uz - i3)2]U12 - m12]}1/2, 

(5b) 

b(j1) = 2il(j1 + l)mz + UMl + 1) + jZ(j2 + 1) - ja(ja + 1)]ml . 

(5c) 
The coupling coefficients in Fig. 2c associated with the 
classical angular momentum diagram in Fig. 2a are the 
solution of a 

c(m m) (i1 jz ja) + d(m m )(i1 j2 j3) 
2' a ml m2 - 1 mg + 1 2' a ml m2 ma 

where 

c(m2, ma) = [(j2 - m2 + 1)(j2 + m 2 )(jg + ma + l)(ia - ms)]l/Z, 

(6b) 

(6c) 

In the limit of large angular momentum quantum num
bers recursion equations (5) and (6) are algebraically 
connected with the classical vector diagrams in Figs. 
la and 2a. To demonstrate this asymptotic connection, 
one may multiply the quantum numbers j I and m / by a 
parameter :\ assumed to be large such that all terms in 
Eqs. (5) and (6) of order 0(:\-2) and smaller may be 
neglected. Let us apply this approximation to Eq. (5) 
first. The length of a classical angular momentum vec
tor corresponding to the quantum number :\i / is :\J I 
=:\j 1+ i (in units m. Substituting this in (5b) gives 

a(j1) = 4F(>..J1 - i, :\J2, >..Ja)P(>"J1 - i, >..m1) 

where 

F(a, b, c) = M(a + b + c)(- a + b + c)(a - b + c)(a + b _ C)]1/2 

is the area of a triangle A(a, b, c) and P(r, z) = Vr2 - Z2 

is the x, y component of a vector r with z component z. 
F('Nl1 - i, >"J2, >..Ja) may be factorized in the following 
way: 

F(>..J1 - i, :\J2 , >..Ja) 

= [F(>..J1 - 1, >"Jz, >..Ja)F(>..JH :\Jz, >..Ja)]l/Z 

X [F(J! - (1/2A), J z• J a) F(J1 - (1/2>..), J 2 , J a) J1/2 
F(J1 - (1/>..), Jz, J a) F(J1, J 2, J a) -

= [1 + 0(>..-2)][F(AJl - 1, >..J2 , >..Ja)F('Nll , 'Nl2 , >..Ja)]1/2. 

Performing this factorization also for P(>..Jl - i, AmI) 
and AJI + i gives 

';ubstitution of the classical angular momenta :\J1 into 
,5c) yields 

b(j1) = 2>..2J1
z>..m2 + ("1o,2J1

2 + >..2J2
2 - A2J a

2)>..m l - iAm2 - t>..m l 

= [1 + 0(>..-2)][2A 2 J
l
2 Xm2 + (x 2J1

2 + A 2J2
2 

- :\2Ja
2)Am l ]. 

Neglecting then terms of order 0(A-2) allows us to write 
(5a) in the more symmetric form 

(F(AJI-1,>..J2,AJS)P(>..Jl-l,>..ml») 1/2 (Xi1 - 1 Xj2 Aja) 
AJI - 1 AmI Am2 xma 

+ (F(AJ I + 1, AJ2, AJ3)P('Nl1 + 1, :\m1») 1/2 
AJ1 + 1 

if one sets in addition >..J1/[(AJ1 - 1)(>..Jl + 1)]1/2 
= 1 + O(A -2) "" 1. 

(7) 

Keeping the parameter :\ explicitly in the following 
derivations would lead to a somewhat cumbersome 
notation. We will therefore omit the parameter x in the 
remaining formulas and assume instead the quantum 
numbers j I(J I) and m I to be large. 

The classical vector diagram (prism) in Fig. la is the 
geometrical counterpart of the 3j-coefficients (~l :; ~a). 
Its triangular base A(Jl ,J2,Ja) contains the sideJ 2 3 

jl + i, j2 + i, and ja + i, the parallel edges L 1 , L 2 , Ls are 
connected with the magnetic quantum numbers through 

The second base in the x, y plane is the triangle 
A[P(j1' m 1); P(j2' m 2); P(ja) ma)]. To emphasize the 
geometric interpretation of the 3j-coefficients we define 

(9) 

Since for nonvanishing 3j-coefficients m l + m2 = 0, the 
three magnetic quantum numbers represent only two in
dependent variables for the 3j-coefficient. This property 
is reflected upon the new variables L 1 , L 2 , and La 
through 

for any constant L. Addition of such a constant L is 
geometrically equivalent to a parallel displacement of 
the x, y plane in Figs. 1a and 2a along the z axiS. 

The coefficients in Eq. (7) are related algebraically 
to the classical vector diagram aSSOCiated with [~1 :2 ~a J. 

XF(xJ1 , AJ2 , AJ3 )P(>..J1 -1, :\m1)P(AJ1, >..ml)]1/Z. The area A of A[P(j1' m 1); PU2' m 2 ); P(ja, rna)] is 1 2 a 
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(10) 

where B1 , the dihedral angle of the prism adjacent to the 
side J 1 , is determined algebraically through 1 

COSB1 = [2J}m2 + (J1
2 +J2

2 -Js
2)m1 ]j4F(Jl>J2, Js)P(Jl> m 1). 

(11) 

By virtue of Eqs. (10) and (11), Eq. (7) becomes 

( 
A(JI - 1) )l/Z [J1 - 1 J2 J s] + ( A(J1 + 1) ) 1/2 

sinG1(J1 - 1) L1 L2 Ls sinB1(J1 + 1) 

(J ) ( 
A(Jl) ) 1/2 [J1 J2 J s ] 0 

+ 2 COSBI 1 sinG1(J1) Ll L2 Ls =. (12) 

This equation, the asymptotic form of Eq. (5) for large 
quantum numbers, may be regarded as the semiclassi
cal version of the recursion equation for the 3j-coef
ficients in Fig. lc. 

The asymptotic form of recursion equation (6) can 
also be derived by expansion in terms of the parameter 
A introduced above. We will not follow this procedure 
explicitly, but point out that the approximation taken 
again neglects only terms of order OrA -2). Equations 
(6b) and (6c) are then approximately 

c(m2, ms) '" [P(J2, m 2 - I)P(Ja, m 2 )P(J3 , m 3 )P(J3 , ms + 1)]1/2, 

d(m2 , ma) =J2
2 +J3

2 -J1
2 + 2m2m g , 

so that (6a) takes the symmetric form 

[prJ m -1)P(J m + 1)]1/2 (j1 j2 
2' 2 3' 3 m

1 
m

2 
- 1 

(13) 

The coefficients in this equation can be related algebrai
catly to the classical vector diagram in Fig. (2a). By 
means of the identities 1 

(14) 

and 

_ 1. J 2
Z +J/ -J,2 + 2m2m g 

COST), - - 2 ( ) ) P J 2 ,m2 P(Js,ms 
(15) 

where 1)1 is the dihedral angle of the angular momentum 
prism adjacent to the side L1> Eq. (13) becomes 

lIz 
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X [J1 J2 J s ] =0. 
Ll L2 La 

(16) 

Equations (12) and (16) may be formally written as 
second order difference equations. Defining 

(12) and (16) are 

[~2(Jl) + 2 - 2 cosB1(Jl)]J(J1) =0, 

[~2(L1) + 2 - 2 cOS1)1(L1)] g(L1) =0, 

(17a) 

(17b) 

(18a) 

(lSb) 

where the second order difference operator is defined 
through ~a(x) h(x) = h(x + 1) - 2h(x) + h(x - 1). 

The complete quantum number domains of Eqs. (18a) 
and (lSb) are confined by the selection rules for 3j-co
efficients. Equation (18a) holds over the J 1-domain 

[j1ml. + t jlmax+~] with j1ml.=max{ Imll, Ij2 - j31} 

and j1 max == j2 + js' 

Equation (lSb) holds over the m 2-domain 

[m2mtn, m2max] with m2mtn ==max{ - ja, - j3 - m 1} 

and mamax ==min{j2,js -mJ. 
The J 1- and m2-values occurring in the manifolds of the 
classical vector diagrams in Figs. la and 2a, respec
tively, are further confined to the smaller domains 
[JlmlD, J1mll<],[M2mID' M2max]. In Fig. la the smallest 
and largestJ1-valuesJ1mlDandJlmax are assumed in 
the limit that the triangle ~(Jl' J2, J 3 ) comes to lie per
pendicular to the x, y plane (flat prism I). Hence, J 1 min 
and J 1 max are determined as solutions of 

(19) 

or, alternatively, as solutions of either of the equations 

(20) 

where B1 and 1) I are the dihedral angles of the prism 
[~1 ~2 :3] adjacent to the sides J i and L I , respectively. 
Tile ~lgtbraic expressions for B2 , B3 and 1)2' 1)s can be 
obtained from Eqs. (11) and (15) by circular permutation 
of the labels of J1> J 2 , J 3 and m1> m 2 , ms' Clearly, in 
the limit of a flat prism the dihedral angles are either 
o or 'If. 

In Fig. 2a the smallest and largest m2-values M2mlD 
and M2max are also assumed in the limit that ~(J1>JaJ3) 
is oriented perpendicular to the x, y plane; i. e., M 2miD 
and M 2 mil< are the solutions of 

(19') 

or 

(20') 

As an illustration we may consider the string of 3j-co
efficients (!lo \000 !;o) in Fig. 1, the solution of Eq. (lSa). 
In this case, the full quantum mechanical domain is 
[40. 5, 160. 5], and is divided into the smaller classical 
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domain [47. 5, 114.5] and the two complementary non
classical domains [40.5, 46.5] and [115.5, 160.5]. The 
division into a classical and two nonclassical domains is 
reflected by the functional behavior of the 3j-coefficients, 
as can be seen from Fig. lc. While progressing along 
thejl-domain, the 3j-coefficients oscillate rapidly in 
the classical region, but decay monotonically to zero in 
the outer nonclassical domains. This situation that the 
domain of Eq. (18a) can be divided into a middle classi
cal region and two outer nonclassical regions 'applies in 
general, though in some instances a nonclassical domain 
may contain only one or no quantum number. 

Figure 2b which presents the string of 3j-coefficients 
e.i~ ~ 10:~ ) demonstrates that the partitioning into a 
class1cal aomain and two distinct nonclassical domains 
prevails also for the domain of Eq. (18b). For the 
example chosen, the classical m2-domain [- 21, 30] lies 
well within the quantum mechanical domain [ - 60, 60] 
separating the two nonclassical domains [- 60, - 22] and 
[31,60]. Again, the values of the 3j-coefficients os
cillate while progressing through the classical domain 
and monotonically decay to zero in the nonclassical 
domains. 

How is the existence of classical and nonclassical 
domains reflected by the difference equations (18a) and 
(18b)? Over the classical domains the dihedral angles 

or 

For slowly varying 81(J1 ) and 7)1(L 1) the difference 
equations (18a) and (18b) can be solved by a discrete 
analog of the WKB approximation, commonly applied to 
the solution of the Schrodinger second order differential 
equation in the semiclassical limit. The "discrete WKB 
approximation" for difference equations is developed in 
the following section. It should be pointed out here that 
this approximation applied to Eqs. (18a), (18b) neglects 
again only terms of order 0(;\-2) and, thus, is consistent 
with the approximations so far employed. 

III. WKB APPROXIMATION APPLIED TO SECOND 
ORDER DIFFERENCE EQUATIONS 

We will now consider the approximate solution of the 
second order difference equations (18a) and (18b) which 
may be written 

[A2 + 2 - 2 cosk(x)] f(x) = 0 (22) 

where we assume k(x) to be real and 0 ~ k(x) ~ 71. The 
case of imaginary k(x) can be treated the same way as 
the case of real k(x) and will be commented upon at the 
end of this section. 

Equation (22) determines f(x) over a discrete set of 
values x, x± 1, x± 2, .... However, since x stands for 
some classical angular momentum variable, Eq. (22) 
can be assumed to hold over a continuous domain of real 
numbers x. In this instance the solution of (22) can be 
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81 and 7)1 are real by definition through the geometric 
formulas (11) and (15). In the nonclassical domains the 
angles 81 and 7)1 together with all remaining dihedral 
angles are complex. This can be verified directly from 
the expressions (11) and (15), which give absolute values 
< 1 for classically allowed quantum numbers and ab
solute values > 1 for nonclassical quantum numbers. 
One can also show from Eq. (4) that A2 is positive in the 
classical region, zero at the boundaries of the classical 
domain J 1 min, J 1 max or 1112 min, M2 max as postulated by 
Eqs. (19) and (19'), and negative in the nonclassical 
domains. Although the classical vector diagrams do not 
exist for 3j-coefficients in the nonclassical domains, 
the algebraic formulas originating from these diagrams, 
i. e., Eqs. (4), (10), (11), (14), and (15), remain valid 
beyond the domain of classically allowed quantum num
bers. Of importance for the following, is the fact that 
the expressions for cos 8 i and cos 7) i are real in the 
nonclassical regions, so that the real parts of 8 i and 7) i 

are constant in these regions, and equal to either 0 or 71. 

To solve Eqs. (18a) and (18b) we start from the ob
servation that the dihedral angles 81 and 7)1' in the limit 
of large quantum numbers, vary slowly with J 1 and Lt. 
To demonstrate this for 81(J1 ) one may again employ an 
expansion in terms of the parameter ;\ introduced above. 
From (11) 

Iviewed as a function over a continuous domain, too, 
since one may take any x as a starting point for the re
cursion implied by Eq. (22). As a function of a con
tinuous variable one would expect f (x) to be determined 
as a solution of a differential equation, rather than a 
difference equation. Indeed, there exists a second order 
differential equation which is closely related to the dif
ference equation (22) and which has f (x) as a solution. 
This holds, however, only within the realm of the semi
classical approximation which had been employed when 
the difference Eqs. (18a) and (18b) were derived. 

We will show now that the differential equation which, 
within the semiclassical approximation, determines the 
f (x) in Eq. (22) is 

( i 2) (Sink(X») 1/2 
dx2+k (x) ~ f(x)=O. (23) 

The semiclassical approximation implies that k(x) is a 
slowly varying function of x, so that we may neglect in 
solving Eq. (23) all terms of order 0(k,2) and smaller 
[k' = (d/dx)k(x)] and also all derivatives of k(x) of order 
2 and higher. With N=[sink(x)/k(x)]112 Eq. (23) can then 
be written 

(24) 

since N"/N"" 0 within the approximation stated. We de
fine here fen) = (dn/dxn)f. Equations (24) allows us to 
express all derivatives of f (x) in terms of f (x) itself 
and its first derivative. It is then readily checked that 
the third and fourth order derivatives are approximately 
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f(3)=- k 2fl1> - 2kk' f - P k2 f, 

f(4) =k'f - 4kk' f'1> - 2pk2f(t) 

where p", - 2N'!N. The even order derivatives are in 
general 

f l2n ) = (_1)n[k2nf _ 2(n -1)n k2n-s k' fit) - n k2n-2 Pf(1)]. 

(25) 

This result permits the evaluation of the difference tJ.2f 
= f (x + 1) - ar (x) + f (x - 1) by a Taylor series expansion 
around x: 

00 k2n 

tJ.2f=2~ (_1)n (2n)!f- 2f 

_ t {_1)n (2n - 2)2n k2n-3 k' f(t> 
""2 (2n)! 

_ t (_1)" ~ k2n-2 P f(1) 
n=1 (2n) I 

=[2cosk(X)-2]f(X)+[(dd
x 

Sink{X») + sink(x) P{x~ 
k(x) k(x) ] 

Xf(t)(x). 

The second term on the right-hand side of the last 
equation vanishes identically since 

d sink (x) 
p(x) = - dx In k(x) , 

so thatf(x), the solution of the differential Eq. (23), 
also obeys the difference Equation (22). It may be noted 
that the derivation carried out here holds also if k(x) is 
pure imaginary. 

The approximation which had been invoked to derive 
the connection between the dtfference equation (22) and 
the differential equation (23) is also employed within the 
customary WKB approximation applied to these equations. 
Hence, it must be possible to demonstrate by means of 
the WKB approximation that (22) and (23) have identical 
solutions. The application of the WKB approximation to 
Eq. (23) is standard and we may just state that from it 
results 

f(x) = ,fSi~(x) cos({" k(x') dx' Hk) (0 < k < IT), 

(26) 

where 0' and C are constants to be chosen in accordance 
with possible boundary and normalization conditions. 

The WKB approximation can also be applied to the 
difference equation (22). One sets 

f(x) =A(x) cos[O(x) +0'] (27) 

where the functions A(x) and O(x) to be determined are 
assumed to be slowly varying such that 

151" I «1 and lA' / A I «1 

and all higher derivatives of O(x) and A(x) can be 
neglected. One has 

f(x± 1) "'A (1 ± ~) cos(O + 0' ± 0' + 0"/2) 
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(28) 

where 

cos(o+ O'± 0' + ~*) =[1- ~ ~~*) 2] cos(O+a± 0') 

0" 
- - sin(O + 0' ± 0'). 

2 

Neglecting the terms (0"/2)2 and (A' / A)(OW /2), one 
obtains 

( 0" A' ) 
f(x± 1) ",A\cOS51' 'F"2 sinO' ± A cosO' cos(O+ 0') 

I.. 0" A') +A ~'F sin51' - "2 cosO' - A sinO' sin(O + 0'), 

which inserted into Eq. (22) leads to 

A(2 cosO' - 2 cosk) cos(O+ a), 

-A( 0" cosO' + 2 ~ Sino') sin(O + 0') '" 0, 

or 

0' =k, 

A' 0" cosO' 
A =- 2 sinO' . 

These last equations determine O(x) and A (x) as 

O(x) = t k(x') dx', 
"0 

A(x)=C/,fsink(x) , 

(29) 

(30) 

which together with (27) shows that the WKB solutions of 
(22) and (23) are indeed identical. This finding holds, of 
course, only as long as the conditions (28) are met. The 
condition I 0* I «1 is equivalent to I k' I «1 which had 
also been assumed in deriving the equivalence of (22) 
and (23). The condition lA' /A I «1 is more restrictive 
and does not hc;:>ld for k close to either 0 or 1T. 

The equivalence of Eqs. (22) and (23) within the semi
classical approximation allows a solution which holds 
uniformly over the entire domain 0 "" k "" 1T. Such solution 
is obtained by means of the uniform WKB approximation 
applied to the differential equation (23) setting 

(s~~)(x») 1 /2 f (x) =A (x) F(O(x)), (31) 

where F (0) stands for the regular or the irregular Airy 
function, 8 the solutions of 

p' (0) - OF(O) = O. (32) 

Inserting (31) into (23) gives by virtue of (32) 

(~ + O'251+k2)F (0) + (2 ~ 0' + 0"') F'(O) = O. 

Assuming now that A' is slowly varying such that A" /A 
= 0 leads to the equations 

O,20+k2 =0, 

A'/A",- t(O"/O'), 

the solutions of which are 

O(x) '" - (i I ~: k(x') dx' I) 2/3, 

A(x) '" C{ I O(x) 11/4/[k(x)]1I2} 
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Finally, 

101 114 

f (x) = C [sink (x) J1I2 F (O(x». (34) 

The integration limit Xo in (33a) must be either of the 
zeroes of sin k(x). In the x region distant from Xo where 
I O(x) 1 is large, i. e., where the solution (26) holds, the 
expressions (34) and (26) can be identically matched. 
This follows from the asymptotic behavior of Airy 
functions 8: For I O(x) 1 »1 and w = f~ k(x') dx' 

o 

liT 10 1114 Ai(- 0) = {COS(W -7T/4) for W > 0 
cos(w + 7T/4) for w < 0 

liT 1011l4Bi(-0)= {COS(W+7T/4) for w>O 
cos(w - 7T/4) for w < 0 . 

(35a) 

(35b) 

The derivation above for the equivalence of Eqs. (22) 
and (23) holds also in the case that k(x) is purely imagin
ary. The uniform WKB approximation applied to Eq. (23) 
gives in this case 

( J." )2/3 O(x)'" ~ "0 Ik(x') I dx' , (36a) 

A (x) ,., C 1 O(x) 1114/ Ik(x) 1112 , (36b) 

and hence 

10(x)11I4 
f(x) = [sinhk(x)J1I2 F(lo(x)I). (37) 

IV. SEMICLASSICAL SOLUTION FOR 3j-COEFFICIENTS 

The semiclassical solutions for the difference equa
tions (18a) and (18b) have been derived formally, and we 
will now evaluate explicit expressions for individual 3j
coefficients from these solutions. It is instructive to 
consider first solution (26) for the difference equations 
which holds only in the classical domain distant from 
the classical boundaries J 1 mil .. J 1 max, and M2 min, M2 ma>:' 

For Eq. (18a) this is 

(38) 

where 

(39) 

and for Eq. (18b) 

[
J 1 J2 J 3] = (_ 1)J1+J2+J3 fL')f cos[ <p(L1) + 1'3] (40) 
L1 L2 L3 VB. 

where 

<p(Lt ) = tl 17t (L t') dL t'. (41) 
L t min 

Of course expressions (38) and (40) must be identical 
and to show this the phase functions O(Jt ) and <p(Lt ) need 
to be evaluated explicitly. In doing so, we will closely 
follow Ref. 1. 

We had pointed out above that the three variables 
. [Jt J2 J,~ • t Lt. L 2, and L3 In L L L are only defmed up 0 a con-

stant which can be idde to these variables without 
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changing the value of the 3j-coefficient. Hence, one is 
free to let L10 L 2, L3 go to infinity keeping the differ
ences m 1 = L2 - L 3, m2 = L3 - L 1, ma = L t - L2 constant. 
In this limit the angular momentum prism associated 
with [ft, f22 23J resembles a tetrahedron T(Jt .J2.Ja, 
L 1 , L 2 , L 3 ) with the triangular base A(J1 , J 2 , J 3 ) and in
finite edges Lh L 2, La. In order to evaluate O(Jt ) and 
<p(Lt ) one can, hence, take advantage of the identity 

3 

6 (J1dBI+L1d17I)=0, 
1=1 

(42) 

a special case of a theorem first derived by Schlaefli 9 

which holds more generally for elliptic tetrahedra. 
From (42) follows 

d t (JiBI + L il1l) = t (JldJi + 17idL j 
,·1 1=1 

or 

(43) 

and one can conclude immediately that Z; ~.1 (J j(J j + L ,17 /) 
is the solution of both Eq. (39) and (41). 

It should be demonstrated that with this solution (38) 
and (40) are indeed independent of the absolute lengths 
of L10 L2 and La. This follows from the geometrical 
relationship 

111 +1]2 +173 = 27T, 

since then 

t Li17i = -l1tm 2 + 172m l + 27TL3• 
1=1 

The constant term 27TL3 (mod 27T) can be added to the 
phase constants Q! and 1'3 in (38) and (40), so that we 
may set 

3 

0(J1) = <p(Lt ) = 6 J I e i-171m 2 +172m l' 
1=1 

(44) 

(38) and (40) are therefore identical if we set C1 = C2 and 
Q! = 1'3. 

The normalization constant C 1 and the phase constant 
Q! still need to be determined. We will derive here only 
C t and must leave the problem of choosing Q! correctly 
to a later discussion of the boundary conditions of the 
3j-coefficients in the nonclassical domains. The 3j-co
efficients represent the matrix elements of the unitary 
transformation T connecting the basis sets Ij2m2) 1i3m3) 
and' (jZ,j3)j1ml)' One may exploit the unitary property 
of T in order to determine the normalization constant 
C 1 : 

In the limit of large quantum numbers this may be 
written for L1 '" L 1' with 

[~: ~~ ~:],., N(Jf, L 1) cos[O(Jt. L 1) + Q! 1, 
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x cos[Sl(Jh L 1') + a] '" 6(L1 - L 1'). 

The method of stationary phase can be applied to get 

1:"" fiJ1 J 1N(Jb Llf cos (L1' - L 1) :~1 ) '" 6(L1 - L 1') 

which holds only if 

N=±(rr~l I O~:iiD1I2. 
To evaluate a20/aJ1aL 1 = ar,1/aJ1 we note that 

aA2/aJ1
2 

COS1]j :: - 4 P(J2, m2)P(JS' ms) 

which can be derived from Eq. (4) and Eq. (15). To
gether with (14) this gives 

(46) 

E!h. - _ !!L (47) 
aJ

1 
- 2A 

and, hence, 

N =± (2;A ) 1/2. 

This result is in agreement with (38) and (40) for C1 
== 1/..[2;. Evidently, this determination of the normaliza
tion constant also yields the correct functional depen
dence 1/£4 for N. It is well known that the phase func
tion of a semiclassical operator alone determines the 
normalization factor N. Our result supports therefore 
(38) as the correct semiclassical 3j-coefficient. We 
have finally for the 3j-coefficients in the classical 
domain 

(48) 

This result, except for the phase constant a to be 
determined yet, is identical with the expression o.f 
Ponzano and Regge and that derived by Miller from the 
correspondence relationships of classical and quantum 
mechanics. . 

The expression for semiclassical 3j-coefficients uni
formly valid over the entire quantum number domain 
can be evaluated from the solutions (34) and (37) of the 
difference equation (22). These solutions are valid even 
near the classical turning points J 1 mi" and J 1 mas: (M2 mill 

and M2 max) provided that k(J1 mtll)' etc. vanish. However, 
in Eqs. (ISa) and (18b) 91 and 1]1 are either 0 or rr at 
the turning pOints. In the latter case, a phase trans
formation has to be employed which induces the proper 
turning point behavior of the difference equation. 

For the following, it may be sufficient to consider 
Eq. (18a) only, since (lSb) would lead to an identical 
solution. We define the phase function 

(49) 
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where 

(f. = {O if 0/~ Re8, ~ .,,/2 , 
• ." if ." 2< ReO,~1f 

(50a) 

(50b) 

ReO, (Re1],) stands here for the real part of 8,(1/,). For 
all quantum mechanically allowed J i and m" no thus de
fined is either an integer or a half-integer multiple of 1T. 
A simple criterion can be found which distinguishes be
tween these two possibilities if J 1 "'J1 mtll or J 1 =J1 max: 

OollT half integer (integer) ..- 0 - 0 0 positive (negative). 

(51) 

To derive this rule one may express n - 0 0 through 

f (81 - B10)dJ1• For J 1 "'J1 min 

J"I o-no= (B1 -B'i)dJl 
"1 mta 

and since 81 is a monotonous function in the neighbor
hood of J1 min it follows from Bl (J1 mtn) = l1f 

{
>O if u;.=0 

n-Slo= <0 if u;.=rr . 
However, for l1f(Jl mln)=O 

[ rli I1i ~ J= [0 IT 0] 
1)~ 1)~ 1J~ 1T 0 1T 

and Oo/1T is half integer, and for rIi{JI ,rdn) = rr 

[~ ~ '1] = r11 
0 1T] 

'I) 1 1)2 1)" b 0 1T 

and 00111 is integer. Similarly, for J 1 '" J1 mu 

(52a) 

(52b) 

is negative for l1f = 0 and positive for rIi = 11. But in this 
case one finds for u;.(J1 mu) =z: 0 

[ i1f I1i ~] _ [0 rr rrJ 
1/~ 1/~ 17g - 0 ." 11 ' 

(5Zc) 

i.e., 0o/rr integer, and for rIi(JI mu)= 11 

(52d) 

i. e., 00hr half integer. Equations (52a)-(52d) are 
readily checked geometrically by drawing the corre
sponding angular momentum diagrams. 

At the boundaries of the classical domain J1 mh' J1mu: 
the dihedral angles Bj and 1]j are either 0 or 11. Since 
the dihedral angles are slowly varying functions of the 
quantum numbers, the angles or: and 1)~ are constant near 
J1 min and J 1 max' One may then set for the solution f of 
Eq. (lSa) 

(53) 

and show that in the regions of constant rIi = 0 or 11 the 
functions f1 and f2 must satisfy the modified difference 
equation. 

(54) 
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The new representation (53) for the 3j-coefficients 
together with this new difference equation, has favorable 
behavior at the boundaries of the classical region, and 
will also facilitate the evaluation of the 3j-coefficients 
in the nonclassical region. 

In the classical domain distant from J 1 min and J 1 m 
f(JJ may be written according to Eqs. (17a) and (48) 

f = [2 1TsinOJ·1/2 [cos 0 0 cos (0 - 0 0 + 0') 

(55) 

and fl and f2 must be chosen such that (53) identically 
matches this expression for J1 min « J 1 « J 1 mu. 

It had been shown in Sec. 3 that the solutions of (54) 
in the semiclassical limit must obey the differential 
equation 

(56) 

where J 1 is now assumed to be a continuous variable. In 
this equation (81 - ~)2 is positive in the classical domain, 
zero at J 1 = J 1 min' J 1 mu and negative in the nonclassical 
domain. According to Eqs. (33a, b) and (34) the solutions 
of (56) are in the classical domain 

where Z = (% 1 0 - 001 )2/3. The solutions in the nonclassi
cal domain obtained by analytical continuation are 

Z1/4 Z1/4 
-;-:--:-:--:'=---=~,.,. Ai(Z) and Bi(Z) (sinh 1 81 - ~1 )1/2 (sinh 1 81 _ ~I )1/2 . 

To identify the functions fl and f2 the boundary conditions 
to be imposed on the 3j-coefficients have to be taken 
into consideration. Evidently, the 3j-coefficients must 
decay monotonically to zero in the nonclassical domain 
so that the irregular Airy function Bi(J) which exhibit 
an exponential increase must be rejected in this domain. 
This boundary condition is satisfied if we set for 
J 1 ml n ,,; J 1 ,,; J 1 mu 

Zl/4 

f= (sin8
1
)1/2 

x {acosoo Ai(- Z) - b sinOo Bi(- Z), 0 - 0 0 < 9 
a' cosOo Bi(- Z) - b' sinOo Ai(- Z), 0 - 0 0 > 0 

(57) 

which analytically continued into the nonclassical domain 
is 

Zl/4 

f = (sinhl 81 _ 6'11 )1/2 

{
a cosOo Ai(Z) - b sinOo Bi(Z) , 0 - 0 0 < 0 

x a' cosOo Bi(Z) - b' sinOo Ai(Z), 0 - 0 0 > O. 
(58) 

Over the discrete set of quantum mechanically allowed 
J l and m l (Le., J p m l either integer or half integer) 
the factors sinOo and cosOo multiplying the irregular 
Airy functions Bi(Z) vanish in the nonclassical domains 
as had been postulated. (57) becomes for 

x {a cosOocos(O - 0 0 + 1T/4) - bsinOosin(O- 0 0 + 1T/4) , 0- 0 0 <0 
a' cosOo cos (0 - 0 0 + 1T/4) - b' sinOo sin(O - 0 0 + 1T/ 4), 0 - 0 0 > O. (59) 

The condition that this expression must identically 
match (55) is met for Ci =7T/4 and a == b== a' = b' =S/V2 
where S =± 1, is an arbitrary phase factor. The 3j-co
efficients are then finally 

x {COSOo Ai(- Z) - sinOo Bi(- Z), 0 - 0 0 < 0 
cosOo Bi(- Z) - sinOo Ai(- Z), 0 - 0 0 > 0 (60) 

in the classical domain and 

13 = S(_1)J 1+J 2+i 3 
. ) Z1/4 

m3 T:ITAr 

x { cosOo Ai(Z) - sinOo Bi(Z), 0 - 0 0 < 0 
cosOo Bi(Z) - sinOo Ai(Z), 0 - 0 0 > 0 

(61) 

in the nonclassical domain. The phase factor S may be 
defined according to the phase convention of Wigner 

(62) 
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1-----------------------------------------
For J 1 == j2 + j3 + ~ in the nonclassic al domain Ai(Z) > 0 
and 

cosOo(O - 0 0 > 0) = - sinOo(O - 0 0 < 0) 

so that 

j2 j3)} =S(_1)i2+i3+m1+1 
m2 ma 

and S = (_1)"2i 3+1 . 

The 3j-coefficients (60) and (61) had been derived as 
the semiclasSical solutions of the recursion equations 
(5) and (6). These recursion equations can be derived 
from the following eigenvalue problems: 

(5) : diagonalization of J 26 in the basis 1 (j2' j3)j1m1>: eigen
values m2==m2mln+n, n=0,1,2, ••• , 

(6) : diagonalization of (J2 + J3)2 in the basis Ij2m2> 1j3m3>: 

eigenvalues jl(h +l)-where jl==jlmln+n, n=0,1,2,···. 

The eigenvectors i. e., the rows and columns of the 
unitary transformation matrix T defined in (1) and (2), 
are then determined except for overall constant factors 
by the recursion equations (5) and (6). In solving these 
recursion equations one may treat the eigenvalues m 2 

and j101 + 1) as unknowns to be determined through the 
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boundary conditions to be imposed on the solutions (60), 
(61). The boundary conditions that the 3j-coefficients 
decay to zero in the nonclassical domains can only be 
satisfied if J1(j1) and m l are either integer or half-
integer for otherwise the coefficients sinOo(O - 0 0 < 0) J 1 

and cosOo(O - 0 0 > 0) in (61) multiplying the exponentially 
increasing irregular Airy functions Bi(Z) do not vanish. 
The semiclassical 3j-coefficients exhibit, hence, a 
typical quantum character in the variables J 1 and m2 (m 3 )· 

Since the semiclassical solution (60), (61) is indepen-
dent of the recursion equation from which the de-
rivation is started, this quantization property must hold 
for all the variables of the 3j-coefficients. Further-
more, it is important to notice that the set of semi-
clasSical quantum numbers J j and m l being thus defined 
as the allowed values J j and m l coincides with the set 
of quantum mechanical quantum numbers jl +L mi. 

v. SEMICLASSICAL 6j-COEFFICIENTS 

The 6j-coefficients {;~ ;~ :~ define a unitary trans
formation T 

T = [(2)' + 1) (2l_ + 1)]1/2 {jl j2 j3} (63) 
JIll 1 ' II l2 13 

between two total angular momentum states with the 
common internal angular momenta l2' ls,j3 coupled in 
different ways to the same total angular momentum j2. 7 

One state is coupled according to the scheme U3' (l2' 
l3)j1 i j2)' i. e., l2 and l3 are coupled to the intermediate j1 
which in turn is coupled with j3 to give j2. The other 
state is coupled according to the scheme (l3(Z2,j3)llij2)' 
i. e., l2,j3 are coupled to the intermediate II which in 
turn is coupled with ls to give j2. Classically this corre
sponds to two ways of addition of angular momentum 
vectors, namely L2+L3=JV J 1 +J3 =J2 and L2 +Jg 

=L1, L1 +LS =J2 • This angular momentum coupling 
situation is illustrated by the classical vector diagram 
in figure 3a where the classical angular momentum 
vectors are defined in the usual way, J; = j i + t and L I 
=l;+t. 

Let us now assume as fixed the lengths of the classi
cal angular momenta J 2,J3 , L1,Lz and L3 in Fig. 3a and, 
accordingly, the quantum numbers j2>j31 l1> l2' ls in 
{:~ :~ :~ and let us consider the 6j-coefficients for all 
possible j1 together with the corresponding classical 
vector diagrams. The manifold of aU possible classical 
vector diagrams is generated by moving vertex 3 of the 
angular momentum vector tetrahedron in Fig. 3a along 
the circle indicated whereby the angle 1)1 goes from 0 to 
7T. J1 assumes then all values which correspond to the 
varying distances between vertex 1 and 3. To complete 
the correspondence between 6j-coefficients and classi
cal vector diagrams it may be recalled that the matrix 
elements defined in (63) squared TJ

l
l

1
2 are to be inter

preted as the quantum mechanical probability for l2' ls 
to be coupled to give jl' or, conversely, that J 1 - t 
,,; I L2 + Lsi,,; J 1 + t. On the basis of this interpretation 
Wigner5 established an approximate functional relation
ship between 6j-coefficients and the associated classi
cal angular momentum tetrahedra. From the assumption 
that each angle 1)1 in Fig. 3a is equally likely, he esti
mated for the probability T j I 2 

1 1 
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(c) 

FIG. 3. The series of 6j-coefficients {i; i; f,. hmin:!Ojl 
:!Ojl max. in (c) and the corresponding manifold of classical 
angular momentum tetrahedra (Jl=h+~. L 1=11+1) generated 
by rotation of vertex 3 around the shaded circle. The quantum 
mechanical probability distribution (2h + 1)(2l 1 + 1){fl fi 1;? 
for the occurrence of the classical vector diagram In la! are 
compared with Wigner's semiclassical estimate (2h + 1) 
(21 1 + 1)/24·n-Y. 
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Thl12 == (2j1 + 1)(2l1 + 1)/247T V (64) h(h) == (2j1 + l){j1 (j1 + 1)[ - j1 (j1 + 1) + jz{j2 + 1) + Mja + 1)] 

where V is the volume of the angular momentum 
tetrahedron given by the Cayley determinant 

0 L2 1 L2 2 L2 
3 

1 

L2 1 0 <Ps ~ 1 
1 L2 <Ps ~ VZ(J1) == 288 2 0 1 (65) 

L2 a ~ ~ 0 1 

1 1 1 1 0 

Equation (64) provides only an estimate for the absolute 
magnitudes of the 6j-coefficients. Figure 3c which 
presents the series of 6j-coefficients {~~o 283~ ~~g} illu
strates that the 6j-coefficients oscillate rapidly while jl 
is progressing along the circle of clasSically allowed 
j1-values in Fig. 3a. Figure 3b which compares the 
corresponding probabilities T j ,I,2 with Wigner's esti
mate (64) demonstrates that (it) holds only as an 
average over several neighboring quantum numbers. 
The exact progression of the 6j-coefficients is, how
ever, determined by the recursion equation 3 

(66a) 

where 

+ l2(l2 + 1) [j1 (j1 + 1) + j2{j2 + 1) - ja(ja + 1)] 

+ la(la + l)[j1 (j1 + 1) - j2{j2 + 1) + j3{j3 + 1)] 

- Zj1 (jl + 1) l1 (l1 + I)}. (66c) 

We will show in the remainder of this section that for 
large angular momentum quantum numbers this recur
sion equation allows us to refine Wigner's result (64). 

In the limit of large quantum numbers recursion 
equation (66) takes on a more symmetric form which 
allows a geometrical interpretation in terms of the 
classical vector diagram 3a. This asymptotic recursion 
equation is again derived through a dilation of the angu
lar momentum quantum numbers (i. e., jj , lj ~ XjpAl j) 
and a consecutive expansion of (66) in terms of X neglec
ting terms of order 0 (X-2) and smaller, assuming that 
X is large. Thus (66b) and (66c) may be written 

(Xj1 + 1) g(Xjl) == [1 + 0(x-2
)] 16[XJ1 (xJI + 1) F (XJI , XJ2, XJ3) 

X F(XJ1 , XL2 , XL3) F(XJ1 -1, XJ2, XJ3) 

XF(XJ
1 
-1,XL2,XL3)J1/2 

and 

h(Xj1) 

= _ 2XJ1[1 + 0(x-2)] [2X2~X2L~ - X2~(_ X2~ + X2 L~ + X2L;) 

_ X2~(X2~ + X2L~ _ X2L;) 

- X2<Ps(X2~ _ X2L~ + X2L;)]. 

Neglecting terms of order 0(X-2
) allows us then to bring 

_____________________ (_6_6--.Jb), (66a) into the following symmetric form: 

(
F(XJ1 -l,XJ2 ,XJ3)F(XJ1 -l, XL2 ,XL3 ») 1/2 

XJ1 -1 {
Xjl -1 Xj2 Xj3} 

XlI Xl2 Xla 

2 2~L~ - Ji(-~ + L~ + L;) - .fa(~ + L~ - L;) - <Ps(~ - L; + L;) 
- 16 F(Jl> J2 ,J3) F(J1 , L2, La) 

(67) 

We will omit the parameter X in the following derivation to avoid a somewhat cumbersome notation. Doing so, we 
assume the quantum numbers i l and II to be large. It is again pointed out that all the following approximations taken 
to solve Eq. (67) are consistent with the neglect of terms 0(X-2). 

The coefficients in Eq. (67) are related algebraically to the classical vector diagrams in Fig. 3(a). This can be 
recognized by virtue of the relations 

(68) 

(69) 
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(67) may then be formally written as a second order 
difference equation 

[,O?(J1) + 2 - 2 cos 811 I(1) '" 0 

where 

I(J) = (~8 ) 1/2 {JZ'l JZ'2 Jz·S}. 
SIn 1 1 2 S 

(70) 

(71) 

This difference equation is valid over the domain 
fi1 In' j1 mul of the j1-manifold of 6j -coefficients 
{:t 72 i:l-· j1 min and j1 mu ~re ~etermin~d as the sm~l~st 
and largest j1-values satIsfymg the trIangular condItions 
for{:~:~:~}, i.e., j1mln=max{lj2-js l, IZ2-Zsl} and 
j1 =min{j2+ja, Z2+lJ. Obviously, the J1-values oc-
~ . 

curing in the manifold of the classical vector dIagrams 
in Fig. 3a also lie within a finite interval [J1mln, J1mul. 
The smallest and largest classically allowed J 1-values, 
J 1 min and J 1 mu' are those for which all angular momen
tum vectors in Fig. 3a happen to lie within a single 
plane (flat tetrahedron). Hence, J1 min and J1 mu are 
determined as solutions of either of the equations 

(72 a) 

where 81 and 1)1 are the dihedral angles of the angular 
momentum tetrahedron adjacent to the edges J I and Lp 
respectively. The algebraic expressions for 82, 8a,1)1' 
1)2,1)S can be obtained from (69) by permutation of the 
labels of J j and LI and by permutation of J and L. Clear
ly, in the limit of a flat tetrahedron the dihedral angles 
are all either 0 or 1T. Alternatively, J 1 min and J 1 max 
may be determined as solutions of 

(72b) 

To compare the quantum mechanical domain fi1 min' 
j1m •• J and the classical domain [J1mln , J 1mul we turn 
to Fig. 3c. which presents the whole string of 6j-coef
ficiEmts {:9~ 28S~ tm. The classical j1-domain is for this 
case [131,1901 and lies well within the domain [110,2301 
of all quantum mechanically allowed j1-values. Hence, 
the quantum mechanical domain [110,230j is divided into 
a classical domain [131,190] and two nonclassical do
mains [110,130] and [191,230]. This situation that the 
quantum mechanical j1-domain of a series of 6j-coef
ficients can be divided into a middle classical domain 
and two outer nonclassical domains applies in general, 
though in some instances the nonclassical domains may 
contain only a few or no j1-quantum numbers. The 
division into classical and nonclassical domains has an 
important meaning which is reflected by the functional 
behavior of the 6j-coefficients, as can be seen from 
Fig. 3c. The 6j-coefficients as one progresses along the 
j1-domain oscillate rapidly in the classical domain and 
decay to zero in the nonclassical domains. 

The existence of classical and nonclassical domains 
is also reflected by the difference equation (70). Over 
the classical domain [J1 min' J 1 max 1 the dihedral angle 
81 (J1 ) is real by virtue of its geometrical meaning, but 
in the nonclassical domains the angle 81 (J1 ) together 
with the remaining dihedral angles is complex. This 
can be verified directly from the algebraic expression 
for cos81 given in Eq. (69) which gives values between 
-1 and + 1 for classical J 1 and values exceeding -1 
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and + 1 for nonclassical J 1 • Equation (65) reveals that 
V2(J1 ) is positive in the classical domain, zero at the 
classical limits J 1 min and J1 mIX' and negative in the non
classical domains. Hence, to a 6j-coefficient in the 
non-classical domain corresponds an angular momentum 
vector diagram with complex dihedral angles and 
imaginary volume. 

To solve the difference equation (70) we start as be
fore in the case of the 3j-coefiicients from the observa
tion that for large quantum numbers 81(J1 ) is a slowly 
varying function of J 1 , since again 

cos 81 (AJ1 +1, AJ2 , "')=cos81(J1 +1/;\, J 2 , ... ), 

as can be readily checked from Eq. (69). Hence, the 
"discrete" WKB approximation derived in Sec. 3 may 
be employed to solve Eq. (70). 

In the classical domain J 1 min « J 1 « J 1 mIX the solution 
as given by (26) is 

{
j1 j2 jsl = ~ cos[0(J1) + a 1 (73) 
Zl l2 ls S "V 

where 
J 1 o (J1 ) = f 81(J/)dJ{. (74) 

J 1 min 

0(J1 ) is again readily evaluated by means of Eq. (43) 
which holds also for the angular momentum tetrahedron 
in Fig. 3a: 

s 
0(J1)= 6 (JI 81 +L j 1)j). 

1=1 
(75) 

To determine the normalization constant C in (73) the 
unitary property of 6j-coefficients 

6 TJ I T J I\. =61 I • 
J

1 
1 1 1 1 1 

can be employed. With 

{
j1 j2 ja}=N(J L )cos[O(J L )+al 
II Z2 Zs l' 1 l' 1 

for L1 '" L~, we have for large quantum numbers 

f dJ1 4J1L 1 JV2(J1, L 1) cos [0 (Jl> L 1) + a J 

X cos [0 (J1, L~) + a 1'" 6(L1 - L~). 

(76) 

(77) 

The method of stationary phase applied to this integral 
gives 

f dJ1 2J1L 1 ~(J1,L) cos (L~ - L 1) :~1 ) "'6(L1 - L~l 
which holds only if 

( 
1 I 00 \ ) 1/2 

N= 2J1L 11T oJ10L1 

However, by virtue of Eq. (43) and (1)/oJ1=J1L 1/6V 
this is 

N=1/v'121TV , (78) 

so that C = 1/";121T is the correct normalization constant. 

The validity of solution (73) is subj ect to the condition 
N-1

1 oN/oJ11 «1. This condition cannot be satisfied for 
small V in the neighborhood of J1 min and J1 max' An ex
pression for the semiclassical 6j-coefficients which is 
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also valid in these regions is found by performing first 
a suitable phase transformation of the solution j(J1 ) of 
the difference equation (70). We define for this purpose 
the phase function 

(79) 

where 

~={~ if 0""8;""7T/2 
if 7T/2 < 8;"" 7T ' 

(80 a) 

11~ ={ ~ if 0""11;""7T/2 
if 7T/2 < 11; "" 7T 

, (80b) 

0 0 is either an integer or a half-integer multiple of 7T. It 
can be shown as for the phase function (49) defined for 
3j-coefficients that 

Ool7T half-integer (integer) .... 0 - 0 0 positive (negative). 

We then set for the solution of (70) 

I (JJ = cosOo 11 - sinOo/ 2 

(81) 

(82) 

and it is readily checked that 11 (J1) and 12 (J1) thus de
fined must satisfy the modified difference equation 

(83) 

in the region of constant rf{. For J1 mi. «J1 «J1 max' I(J1) 
determined through (73) and (78) is 

I(J1 ) = (127T sin81)-1/2 [cosOo cos (0 - 0
0 
+ C\') 

(84) 

Hence, 11(JJ and 12(J1 ) should be determined as to 
satisfy Eq. (83) in the neighborhood of J 1 mi., J 1 max and 
to match identically through Eqo (82) this expression for 
J1 mi. « J1 « J1 max • 

From the result of Sec. 3 one can infer that the solu
tions of the difference equation (83) in the semiclassical 
limit must obey the differential equation 

(~2 - (81- rf{)2) (Sin
8
:8.:. ~rf{») 1/2 I;(JJ=O (85) 

where J 1 is assumed to be a continuous variable. As 
was the case in Eq. (56), (81 - rf{)2 is positive in the 
classical domain, zero at J 1 min' J 1 max and negative in 
the nonclassical domain. The solutions of (85) and (56) 
are therefore formally identical, only the explicit al
gebraic form of the variables involved being different. 
Furthermore, the boundary conditions to be imposed on 
the solutions of the 6j-coefficients (82) are identical to 
the boundary conditions postulated for the 3j-coefficients, 
L e., the 6j-coefficients must decay to zero in the non
classical domain as is illustrated by the example given 
in Fig. 3c. We have therefore for J1 mi. '" J1 '" J1 max 

ZI/4 

I = (sin8
1
)1/2 

1984 

X {a cosOo Ai(- Z) - b sinOo Bi(- Z), 0 - 0 0 < 0 
a' cosOo Bi(-Z)-b' sinOo Ai(-Z), 0 -00 >0 
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(86) 

and for J1 '" J1 min' J1>-- J1 max 

1 Z 11/4 

1= [sinhl 81 -/1i1 Jl/2 

X {a cosOo Ai(Z) - b sinOo Bi(Z) for 0 - 0 0 < 0 
ct cosOo Bi(Z) - b' sinOo Ai(Z) for 0 - 0 0 > 0 

where 

Z = (i I 0 - 0 0 I )2/3 . 

(87) 

(88) 

Over the discrete set of quantum mechanically allowed 
J i and Lp the factor sinOo (0 - 0 0 < 0) and cosOo (0 
- 0 0 > 0) of the irregular Airy functions Bi(Z) vanish in 
(87), so that (86) in the classical domain together with 
its analytical continuation (87) in the nonclassical do
mains indeed represent a possible solution. This 
solution matches identically with (84) if one chooses 
a=b=a'=b'=S/illin (86) and (87) and a=7T/4 in (84), 
S being an arbitrary phase factor. The 6j-coefficients 
are then finally 

1t 12 13 -S 
{

. . .} ZI/4 

II l2 l3 - "12 V 

x {COSOo Ai(- Z) - sinOo Bi(- Z), 0 - 0 0 < 0 
cosOo Bi(- Z) - sinOo Ai(- Z), 0 - 0 0 > 0 

in the classical domain and 

j } ZI/4 
z: =S Ji2iVi 

{
COSOo Ai(Z)-sinOo Bi(Z), 

X cosOo Bi(Z) - sinOo Ai(Z), 

(89) 

(90) 

in the nonclassical domain. The phase factor S may be 
determined according to the phase convention 

(a) j2 + j3 > Z2 + l3: 

{~ ~~~ ~~~}= {~ ~ ~} 

But 

is constant throughout the nonclassical domains, hence 
for (a)jlmax=l2+l3' Le., _sinOo=(_1)J2+J3+12+13 and 
f (b) ' - . + . . . . ,.., - ( 1)J2+J3+12+ 13 Sl'nce or ltmax-h 13, l.e. -sln··o- - . 
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in the nonclassical domain at jl == jl max Ai(Z) and Bi(Z) 
are both positive, the sign of (90) is 

(_1)/2+J 3+1 2+1 3 , 

so that the sign convention (91) is met for S == 1. 

Let us finally compare our result (89) and (90) with 
the semiclassical expressions for the 6j -coefficients 
stated by Ponzano and Regge. These authors give three 
formulas, one valid. for J 1 min «J1 «J1mu, one for 
J1 « J1 min' J1 » J1 milt and one for J1 '" J1 min' J1 max· In the 
classical domain distant from J1mh• J l m&>: , we have 

{
jl j2 js} _ 1 (n '!!.) 
II ~ l3 - v'121TV cos •• + 4 

(92) 

which is identical with the expression of Ponzano and 
Regge in this region. In the nonclassical domain distant 
from J1 min' J1 mu (90) becomes for Ji and L j either 
integer or half-integer 

{

j1 j2 j3} = (_1)j2+
/

3+
/

2+
/

3 1 (-10- 0 I) 
1 1 1 2h21T1 VI exp 0 
123 

(93) 

in agreement with the result of Ponzano and Regge. 

To describe the 6j-coefficients in the neighborhood of 
J 1 min' J 1 max Ponzano and R~gge introduced the variable 

(94) 

where F4 = F(J1 ,J2 ,J3) F(J1 , L 2 , L 3 ) F(Ll> L 2 ,J3) F(Ll> J2 , L 3) 

and the variable 

<I>={00-~1T for 0-00<0 . 

0 0 - 21T for 0 - 00 > 0 

Inserting these variables into (89) and (90) yields for 
0-00 ~o 

and 

{
jl j2 j3} =2-4 / 3 Fil/ 6[COS<I> Ai(-Z)±sin<I> Bi(-Z)] 
II ~ l3 

{
jl j2 j3} = 2-4 / 3 F;,1/6(COS<I> Ai(Z)- sin<I> Bi(Z)] 
11 12 13 

(89' ) 

(90' ) 

where Z =::: (3V)2/(4F4 )2/3. For physical values of J( and 
L p <I> is an integer multiple of 1T and (89') and (90') are 
then identical with the expressions of Ponzano and Regge. 

Thus we have demonstrated that the semiclassical 
expressions for 6j-coefficients first stated by Ponzano 
and Regge on the basis of only heuristic arguments can 
be derived systematically from the recursion relation
ship (66). It is admirable that Ponzano and Regge 
succeeded in obtaining their results without the 
guideline of a step-by-step derivation. 

Equation (94) holds only in a small neighborhood of 
J1 mi., J1 max· For this reason the expressions of 
Ponzano and Regge (89') and (90'), though identical with 
our results (89) and (90) near J1 i , J 1 do not match mU. mu' 
the functions (92) and (93) which hold distant from the 
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classical boundaries. But our results (89) and (90) hold 
uniformly over the entire domain of quantum numbers 
and represent therefore an improvement over the 
approximations of Ponzano and Regge. 

The recursion equation (66) of the 6j-coefficients can 
be derived as the secular equation of a certain eigen
value problem in which II (ll + 1) represents the eigen-

I d I ~) {II 12 /3\ I" . <: • ) th . vaues an V,lVI == 11'21;tl Vlml.";h~hmlz e elgen-
vectors.3 We may have regarded L~ '" II (11 + 1) in Eqs. 
(66c) and (67), (69) as unknown, carried through the 
derivation to be finally determined by the boundary con
ditions, i. e., V'I (it) - 0 for jl » J1 mix and jl « J1 min. The 
semiclassical expressions (89) and (90) reveal then, that 
these boundary conditiOns are met only for Ll being 
either integer or half-integer, for otherwise the coef
ficients sinOo(O - 00 < 0) and cosOo(O - 0 0 > 0) in (90) 
multiplying the irregular Airy functions do not vanish. 
The semiclassical solution of the 6j-coefficient recur
sion (eigenvalue) equation exhibit thus the expected 
quantum character for L l • More interestingly, it pre
dicts the exact discrete set of quantum numbers (integer 
and half-integer). Since the solution (89) and (90) is in
dependent of the recursion equation used as a starting 
point for the derivation (there are 6 different recursion 
equations), this remark holds as well for all variables 
in the 6j-coefficients which must all be quantized ac
cording to Eq. (90). It is a remarkable fact that the 
semiclassical quantum numbers COincide with the set of 
exact quantum numbers for such a coincidence is only 
found in few situations (for example, for the Coulomb 
potential and harmoniC oscillator eigenvalue problem) 
which possess special underlying symmetries. It may be 
speculated that it is the puzzling Regge-symmetry of 6j
coefficients 10 (and 3j-coefficients) which is responsible 
for this remarkable coincidence. 

VI. COMPARISON OF EXACT AND SEMICLASSICAL 
WIGNER COEFFICI ENTS 

A comparison of exact and semiclassical 6j-coef
ficients had already been carried out by Ponzano and 
Regge. Since earlier algorithms (and tables) for 6j-co
efficients were restricted to the domain of only moderate 
quantum numbers, these authors were not in a position 
to demonstrate directly the accuracy of semiclassical 
6j-coefficients (and 3j-coefficients by the same token) 
involving large quantum numbers. Because of the sur
prisingly good agreement between exact and semiclassi
cal 6j-coefficients at small and moderate quantum num
bers Ponzano and Regge expected that the semiclassical 
expressions should give very satisfactory values for 
large quantum number 6j-coefficients. 

Recently, we have developed an algorithm for the 
evaluation of 3j- and 6j-coefficients on the basis of the 
same recursion equations (5), (6), and (66) from which 
the semiclassical 3j- and 6j-coefficients had been de
rived as asymptotic solutions. 3 This algorithm was 
found numerically stable even for large quantum num
bers-in fact, it served to evaluate the 3j- and 6j-coef
ficients in Figs. 1-3. Hence, it is now possible to 
examine directly the accuracy of large quantum number 
semiclasSical Wigner coefficients. In Tables I-ill are 
given some sample values of the Wigner coefficients 
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TABLE I. Accuracy of semiclassical 3j-coefficients 
( Jl 100 60\ 
-10 60 -50/' 

TABLE II. Accuracy of semiclassical 3j-coefficients 
(!i8 ~ IcL~. 

it Exact quantum Uniform semiclassicalb m Exact quantum Uniform semiciassicalb 

mechanicala 

40 0.4999 (- 04) 0.4833 (-04) 
46 0.0848 (- 01) 0.0847 (-01) 
48 0.1563 (- 01) 0.1562(-01) 
50 0.1857 (- 01) 0.1858 (- 01) 
52 0.1139 (-01) 0.1141 (- 01) 
54 - O. 0352 (- 01) - O. 0349 (- 01) 
56 - 0.1385 (- 01) - 0.1385 (- 01) 
58 - O. 0927 (- 01) -0.0929 (-01) 
60 0.0519 (- 01) 0.0517 (-01) 
70 0.0119 (-01) -0.0115 (-01) 
80 - O. 0213 (- 01) - O. 0214 (- 01) 
90 - O. 0808 (- 01) -0.0807 (-01) 

100 - O. 0926 (- 01) -0.0927 (-01) 
106 0.0320 (- 01) 0.0322 (- 01) 
108 0.1051 (- 01) 0.1052 (- 01) 
110 0.1372 (- 01) 0.1372 (- 01) 
112 0.1300 (- 01) 0.1300 (- 01) 
114 0.1006 (- 01) 0.1005 (- 01) 
116 O. 0665 (- 01) 0.0664 (-01) 
118 0.0385 (- 01) 0.0384 (- 01) 
120 0.0197 (- 02) 0.0197 (- 01) 
130 0.1407 (- 04) 0.1404 (- 04) 
140 0.7206 (- 08) 0.7191 (- 08) 
150 0.1438 (-12) 0.1433 (-12) 
160 0.3811 (- 20) 0.3672 (- 20) 

~Evaluated by recursion, Ref. 3. 
Evaluated from Eqs. (60), (61). 

mechanicala 

-60 0.1749(-30) 
- 50 0.7794 (-17) 
-40 0.5450 (-09) 
-30 0.4795 (-04) 
-24 0.0286 (-01) 
- 22 0.0682 (-01) 
-20 0.1207 (- 01) 
-18 0.1445 (- 01) 
-16 0.0841 (-01) 
-14 - O. 0462 (- 01) 
-12 - 0.1163 (- 01) 
-10 - O. 0255 (- 01) 

0 0.0863 (- 01) 
10 0.0357 (- 01) 
20 - O. 0810 (- 01) 
22 -0.1043 (-01) 
24 0.0120 (- 01) 
26 0.1229 (- 01) 
28 0.1418 (- 01) 
30 0.0974 (- 01) 
32 0.0474 (- 02) 
34 0.0174(-02) 
40 0.1951 (- 04) 
50 0.8202 (-10) 
60 0.3218 (-19) 

I.Evaluated by recursion, Ref. 3. 
bEvaluated from Eqs. (60), (61). 

0.1626 (- 30) 
0.7760 (-17) 
0.5436 (- 09) 
0.4788 (-04) 
0.0286 (-01) 
0.0682 (- 01) 
0.1207 (- 01) 
0.1446 (- 01) 
0.0842 (- 01) 

-0.0461 (-01) 
- 0.1163 (- 01) 
-0.0257 (-01) 

0.0862 (-01) 
0.0354 (- 01) 

-0.0812 (-01) 
- 0.1042 (- 01) 

0.0122 (- 01) 
0.1230 (- 01) 
0.1418 (- 01) 
0.0974 (-01) 
0.0474 (-02) 
0.0174 (-02) 
0.1948 (- 04) 
0.8177 (-10) 
0.3099 (-19) 

presented in Figs. 1-3 together with the corresponding 
semiclassical values. The relative errors between the 
exact and the semiclassically evaluated 3j- and 6j-co
efficients are found to be in general small (less than 1%). 
Exceptions are only the terminal 3j- and 6j-coefficients 
(h_~ 1:: _~~), etc. for which the error is of the order 
1%. 

We discussed above the connection between Eqs. (89), 
(90) and the semiclassical expressions (92), (93), (89'), 
(90') stated by Ponzano and Regge. While (89), (90) 
provide a uniform approximation to the 6j-coefficients 
over the entire domain of allowed quantum numbers, the 
expressions of Ponzano and Regge hold only over mu-

TABLE III. Accuracy of semiclassical 6j-coefficients {l~A 2~~ U8}. 

110 
120 
126 
128 
130 
132 
134 
136 
138 
140 
150 
160 
170 
180 
182 
184 
186 
188 
190 
192 
194 
200 
210 
220 
230 

Exact quantum mechanical a 

0.3865 (-13) 
0.2191 (-06) 
0.0307 (- 03) 
0.0973 (- 03) 
0.2405 (- 03) 
0.4552 (-03) 
0.6285 (- 03) 
0.5503 (- 03) 
0.1216 (- 03) 

- O. 3852 (- 03) 
-0.3367 (-03) 
- O. 4230 (- 03) 
-0.3378 (-03) 
-0.4400 (-03) 
- O. 0969 (- 03) 

0.3378 (- 03) 
0.5611 (- 03) 
0.5289 (- 03) 
0.3666 (- 03) 
0.2021 (- 03) 
0.0919 (- 04) 
0.3194 (-05) 
0.5648 (- 09) 
0.1537 (-14) 
0.2427 (-23' 

aEvaluated by recursion, Ref. 3. 
bEvaluated from Eqs. (89), (90). 
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Uniform semiclassical b 

0.3725 (-13) 
0.2186(-06) 
0.0307 (- 03) 
0.0972 (- 03) 
0.2402 (- 03) 
0.4550 (-03) 
0.6284 (-03) 
0.5507 (- 03) 
0.1224 (- 03) 

-0.3847 (-03) 
-0.3359 (-03) 
-0.4231 (-03) 
-0.3372 (-03) 
-0.4398 (-03) 
-0.0963 (-03) 

0.3383 (-03) 
0.5612 (-03) 
0.5288 (- 03) 
0.3664 (-03) 
0.2019 (-03) 
0.0918(-04) 
0.3190 (-05) 
0.5637 (-09) 
0.1533 (-14) 
0.2339 (- 23) 

Ponzano and Regge semiclassical 

0.3737 (-13) 
0.2206 (- 06) 
0.0315 (- 03) 
0.1018 (- 03) 
0.2362 (- 03) 
0.4541 (-03) 
0.6154 (- 03) 
0.5466 (-03) 
0.1069 (- 03) 

- O. 3931 (- 03) 
-0.3381 (-03) 
-0.4231 (-03) 
-0.3392 (-03) 
-0.4491 (-03) 
-0.1090 (-03) 

0.3265 (- 03) 
0.5606 (- 03) 
0.5202 (- 03) 
0.3665 (-03) 
0.1983 (- 03) 
0.0964 (-04) 
0.3239(-05) 
0.5667 (- 09) 
0.1537 (-14) 
0.2342 (- 23) 
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TABLE IV. Convergence of sellliclassical3j-coefficients (it J:~~ f:~t>. 

it :\=1 :\=2 :\=4 :\=8 :\=16 :It = 32 

1 0.2789 (00) 0.1769 (00) 0.9692 (- 01) 0.4032 (-01) 0.0977 (-01) 0.0806 (- 02) QM& 

0.3043 (00) 0.1959 (00) 0.9520 (- 01) 0.3878 (-01) 0.0926 (- 01) 0.0758 (-02) SC 

2 - O. 9535 (- 01) -0.8063 (-01) 0.0457 (-01) -0.3174 (-01) 0.1288 (- 01) 0.0297 (-02) QM 

-0.9303 (-01) - O. 8294 (- 01) 0.0523 (- 01) -0.3172 (-01) 0.1285 (- 01) 0.0285 (- 02) SC 

3 - O. 6742 (- 01) - O. 6995 (- 01) -0.0141 (-01) -0.2728 (-01) 0.1378 (- 01) 0.6773 (- 02) QM 

- O. 6975 (- 01) -0.7031 (-01) -0.0143 (-01) - 0.2730 (- 01) 0.1378 (- 01) 0.6773 (-02) SC 

4 0.1533 (00) 0.5646 (- 01) - O. 2083 (- 01) - 0.1316 (- 01) - O. 0825 (- 01) - O. 0275 (- 02) QM 

0.1558 (00) 0.5571 (- 01) - O. 2158 (- 01) - 0.1325 (- 01) - O. 0823 (- 01) -0.0281 (-02) SC 

5 - 0.1564 (00) 0.9203 (- 01) O. 5313 (- 01) 
- O. 1566 (00) 0.9204 (-01) 0.5315 (- 01) 

6 0.1099 (00) 0.4867 (-01) 0.1711 (- 01) 
0.1090 (00) 0.4835 (- 01) 0.1704 (- 01) 

7 - 0.5536 (- 01) 0.1177 (- 01) 0.9524 (- 03) 
- O. 5441 (- 01) 0.1162 (- 01) 0.9452 (- 03) 

8 0.1800(-01) 0.9460 (- 03) 0.4072 (-05) 
0.1727 (- 01) 0.9079 (-03) 0.3915 (- 05) 

aQM= quantum mechanical values; SC = semiclassical values. 

tually exclusive regions of the quantum number domain 
and do not connect smoothly with each other near the 
classical boundaries J f min' J f milt (M f min' M f milt) In 
Tables I-III the 3j- and 6j-coefficient quantum mechani
cal and semiclassical values are presented for several 
consecutive values near the classical boundaries to 
demonstrate the uniformity of the semiclassical formu
las (60), (61) and (89), (90). As can be seen from the 
quoted numerical values, the uniform expressions are 
very accurate and furnish thereby an improvement over 
the expressions of Ponzano and Regge. 

The derivation of the semiclassical Wigner coefficients 
as the asymptotic solutions to the recursion equations 
(5), (6) and. (66) had been based on the expansion of 

( 
Ajl Aj2 AjS) and {Ajl Aj2 AjS} 

AmI Am2 Ams All Al2 Als 

0.2863 (- 01) 0.1021 (- 01) -0.4379 (-02) QM 
0.2865 (- 01) 0.1023 (- 01) -0.4376 (-02) SC 

0.0397 (-01) 0.4149 (- 03) 0.8876 (-05) QM 
0.0397 (- 01) 0.4145 (- 03) 0.8870 (-05) SC 

0.1178(-04) 0.3496 (-08) 0.6071 (-15) QM 
0.1173 (-04) 0.3488 (-08) 0.6064 (-15) SC 

0.1220 (-09) 0.1804 (-18) 0.6568 (- 36) QM 
0.1174(-09) 0.1738 (-18) 0.6332 (- 36) SC 

in terms of powers of A, such that all terms up to order 
O(A- I ) had been kept. This suggests that the semiclassi
cal Wigner coefficients should converge to the quantum 
mechanical values with increasing A. This conjecture is 
examined in Tables IV and V, for 3j- and 6j-coefficients. 
In Table IV the series of 3j-coefficients e!~ _;.55~::~~) are 
evaluated for A = 1,2,4,8,16,32 by means of recursion 
of Eq. (5) and by its asymptotic semiclassical solution 
(60), (61). As can be inferred from the tabulated values 
the relative error of the semiclassical 3j-coefficients 
does decrease with increasing A. Similarly, one can 
observe from Table V which presents the values of the 
6j-coefficients {:.~~ 7?~~ 7;~J for A=I,2,4,8,16 that the 
semiclasSical 6j-coefficients converge to the exact 6j
coefficients with increasing A. 

Finally, the question may be raised if for very large 
quantum numbers a semiclassical evaluation of the 

TABLE V. Convergence of semiclassical 6j-coefficients {i.!; 1~~ 1:h}. 

it ;1.=1 ;1.=2 :\=4 :\=8 :\= 16 

0.3491 (- 01) 0.1218(-01) 0.3226 (-02) 0.0513 (-02) 0.0302 (- 03) QM a 

0.3482 (-01) 0.1201 (- 01) 0.3155 (-02) 0.0499 (-02) 0.0292 (-03) SC 

3 . 0.1891 (-01) - O. 7077 (- 02) 0.0185 (-02) - 0.1458 (- 02) 0.2156 (-03) QM 
0.1905 (-01) - O. 7068 (- 02) 0.0180 (- 02) -0.1458 (-02) 0.2157 (-03) SC 

5 - O. 2359 (- 01) 0.8663 (- 02) 0.2973 (- 02) 0.0887 (-02) 0.1358 (-03) QM 
- O. 2382 (- 01) 0.8706 (-02) 0.2982 (-02) 0.0889 (- 02) 0.1362 (- 03) SC 

7 0.0129 (-01) - O. 7728 (- 02) 0.1603 (- 02) -0.0698 (-02) 0.0315 (- 03) QM 
0.0152 (- 01) -0.7717 (-02) 0.1596 (-02) - O. 0699 (- 02) 0.0318 (-03) SC 

9 0.1677 (-01) 0.0231 (-02) - O. 2800 (- 02) 0.0854 (- 02) 0.0697 (- 03) QM 
0.1671 (- 01) 0.0198 (- 02) - O. 2800 (- 02) 0.0854 (-02) 0.0696 (- 03) SC 

11 - O. 2135 (- 01) 0.7795 (- 02) 0.2264 (- 02) - O. 0020 (- 02) -0.3562 (-03) QM 
-0.2147 (-01) 0.7793(-02) 0.2259 (- 02) - O. 0022 (- 02) - O. 3561 (- 03) SC 

13 0.2521 (-01) 0.9407 (- 02) 0.1724 (- 02) -0.1184 (-02) 0.4040 (-03) QM 
0.2527 (-01) 0.9429 (-02) 0.1731 (-02) -0.1183 (-02) 0.4039 (- 03) SC 

15 0.0271 (- 01) 0.7636 (- 04) 0.1171 (-06) 0.5415 (-12) 0.2293 (-22) QM 
0.0257 (-01) 0.7175 (- 04) 0.1095 (- 06) 0.5051 (-12) 0.2136 (-22) SC 

aQM_ quantum mechanical values; SC - semiclassical values. 
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Wigner coefficients should be favored over a recursive 
evaluation. The recursive evaluation of the Wigner co
efficients generates simultaneously whole strings of 3j
and 6j-coefficients like 

whereas the semiclassical formulas need to evaluate 
each 3j- and 6j-coefficient individually. In cases for 
which such whole arrays of coefficients are needed, the 
recursive method involves less numerical effort than 
the semiclassical method, and also provides more ac
curate numerical values. In cases where only individual 
coupling coefficients are needed a semiclassical evalua
tion may nevertheless be quite useful. In addition to 
numerical evaluation, our systematic derivation of the 
semiclassical Wigner coefficients should contribute to a 
better physical understanding of the quantum mechanical 
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theory of angular momentum coupling. 
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An inverse problem in statistical mechanics '* 
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We study some one-dimensional systems specified by their nearest neighbor distribution. It is found that 
systems exhibiting second order phase transitions can be constructed. This paradoxical situation is resolved 
by a consideration of the peculiarities of the underlying potential. It is shown that the usual compressibility 
equation is not satisfied for these systems. 

I. INTRODUCTION 

The standard approach to classical statistical 
mechanics begins with the specification of an interac
tion potential among the particles. This determines 
a distribution defined on the phase space of a system at 
equilibrium in the manner of Gibbs. This distribution 
is then used in the calculation of ensemble averages of 
physical interest. 

An "inverse problem" of statistical mechanics can be 
posed as follows: Given a distribution of particles what 
is the nature of the underlying potential which would 
make that distribution Gibbsian? Recently, we have 
examined this question in connection with a one-dimen
sional system where the questions of statistical mecha
nics are formulated and solved as problems in geomet
rical probability. I In Ref. 1 certain geometrical specifi
cations defining the system were used to compute the 
nearest neighhor distribution whose asymptotic behavior 
determined the equation of state. The pressure p(P) as 
a function of the density P was found to be a smooth 
curve defined up to a maximum denSity characteristic 
of the model. The underlying potential was found in Ref. 
1 to be explicitly density dependent. In this paper we 
consider a more formal approach by assuming a nearest 
neighbor distribution f(x, A) depending on a parameter 
A'" 0, and show how it is possible to construct one
dimensional systems which behave in a physically 
reasonable manner and yet violate known results con
cerning one-dimensional claSSical systems. We inter
pret this in terms of the peculiarities of the underlying 
potential. 

II. A SECOND ORDER PHASE TRANSITION 

Consider. a one-dimensional system with nearest 
neighbor distribution f(x, A) subject to the conditions 

fo~f(x, A)dx==l (1) 

and 

f(x, A) - exp[ - P(A)X] as x - 00. (2) 

The denSity peA) is given by 

1/ peA) = fo ~ xf(x, A) dx. (3) 

Eliminating A between P = peA) and P = peA) gives us the 
equation of state 

P=p(P). (4) 

If we further suppose that consecutive intervals are 
independently distributed, then the formula2 [see also 
Eq. (11) in Ref. 1] 
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exp[ - P (A)X ] exp[ - V(x , A)] 
f(X,A)= ftexp(-P(A)x]exp[- V(x,A)]dx (5) 

determines an underlying pair potential Vex, A) up to a 
function of A. In general the interaction depends on A as 
indicated. [peA) denotes f3 times the pressure, and 
Vex, A) f3 times the pair potential throughout this paper 
with f3 = l/kT. ] Given f(x, A) correlations are also deter
mined via the formula 

and 

~ 

pg(x) = 6 (f *I * ... *f)n(x) 
n=1 

g(r1 • •• rn) = n g(rj - r J). 
j<j 

(6) 

The pair correlation function g(x) is an infinite sum with 
each term denoting the n-fold convolution of f(x, A). The 
infinite sum is just the sum of nth-neighbor distribu
tions, i. e., two particles can be either nearest neigh
bors or second neighbors, etc. 

For the sake of illustration consider the following 
examples: 

(a) The pure exponential case, f(x, A):= A exp(- Ax). 
This is ofeourse the ideal gas with P = p = A. Equation 
(6) gives g(x) = 1 readily. 

(b) If f(x, A) is chosen to be an exponential outside a 
hard-core region 

f( A) {a, x <a, 
x, = Aexp[-A(x-a)], x>a, 

we obtain the case of a hard-rod gas. Equations (2) and 
(3) give 

peA) = (1 + Aa)/A, peA) = A, 

yielding P(P)=p/l-pa. 

We now consider fIx, A) to be a linear combination of 
exponentials: 

f(x, A) = i {PI (A) exp[ - PI (A)x] + P2(A) exp[ - P2(A)X]} (7) 

with PI (A) and P2 (A) monotone increasing functions of A, 
and PI(A) - ° as A - 0. Equation (3) implies that 

1 1( 1 1) 
p(A) == 2 PI (A) + P2 (A) . 

We must have that P2(A) -PI (A) as A - 0, so that the 
physical condition 

PIA) -peA) as p - 0 

is satisfied. 

Copyright © 1975 American Institute of Physics 
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Clearly we can choose the functions Pt(A) and P2(A) 
in a way to make this system exhibit a second order 
phase transition of the Ehrenfest type. Let P10"'}';; pl1t) 
up to A = At and P2 (A) < Pt (A) for A> At. Equations (8) and 
(9) and the monotonicity condition ensure that dp/dp> 0, 
and that the ideal gas law is obeyed as p - O. 

The asymptotic behavior 

f(x, A) - exp[ - P(A)X] (10) 

with 

P(A) ={Pt (A), A < At. 
P2(A), A> At, 

implies that P = p(P) has two branches with a discontinu
ous derivative at Pt = p(At). Choose, for example, Pt (A) 
= A, and P2(A) = A for A < At and P2(A) = (A + At)/2 for A> At. 
The correlations in this model are given according 
to Eq. (6) by 

00 n .. 1 

p(A)g(X,A)=E (:-1)1 [P~exp(-Ptx)+P2exp(-P2X)] 

n-t (n) pn-kpk an-k-t ak-t 
+ (_)n ~t k (n _ k _\) 12(k _ 1) 1 apj-k-t ap~-t 

iexp(- pzx) - exp(- PIX») 
'\ Pt-P2' (11) 

It remains to explain the rather paradoxical equation 
of state (10). The nonexistence of this type of behavior 
in one-dimensional systems has been shown under very 
general conditions. 3 For systems with nearest neighbor 
interactions the nonexistence of a phase transition is 
usually shown by the formula4 

1 ap 1 1 f 00 (00 2 
p2 op="2 <p2(P) 0 J

o 
(x-y) exp[-p(x+y)] 

Xexp{- [V(x) + V(y)]}dxdy (12) 

where 

<p(P)=Jo
oo 

exp(-px)exp[- V(x)]dx. 

Boundedness and continuity in p of the right- hand side 
in (12) rules out both first and higher order phase 
transitions. However, if we allow for interactions 
V(x; p) depending explicitly on the denSity the analogous 
formula would be 

1 ap 1 1 f 00 100 
2 [ pz op="2 <p2(p) 0 0 (x-y) exp -P(x+y)] 

xexp{- [V(x;p) + V(y;p)]} 

_ <P~P) ~oo dx ~oo dY[e::~X»)(~~y 

+ (o~~X»)( ~~) Jexp[ - p(x +y)] 

xexp{- [V(x;p) + V(y;p)]}. (13) 

The derivation of both (12) and (13) consists of differen
tiating the chemical potential ).J. = - In<p(p) with respect 
to P twice. We see that the derivatives of p(P) are in
volved in both sides of the equation and, for example, 
a discontinuity in ap/ap is no longer excluded. At a 
point of discontinuity of ap/ap Eq. (13) would simply 
not be defined. If we allow V(x; p) to be nonanalytic in p 
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then we can construct systems with phase transitions of 
any order. This is precisely the situation that occurs 
with our choice of f(x, A) in (7). Formula (5) in conjunc
tion with Eq. (10) clearly shows that the pair potential 
underlying this system must be density dependent and 
nonanalytic in p at p = Pt. This is because from (5) we 
have 

In V = In{exp[P(A)x ]f(x, A)N(A)} 

where N(A) denotes the normalization in (5). Using (7) 

a
o lnv\ =P(A)+ a

O 
lnf(x, A) I 

x:<=o X ",,0 

1
1 (PtP2 - P~) < 

= "2 f(O, A) , p Pt, 

1 (PtP2 - ph 
"2 f(O, A) , p > Pt, 

which is clearly denSity dependent. This fact removes 
the above- mentioned paradox. 

III. CONCLUDING REMARKS 

The one-dimensional systems specified by (7) do not 
satisfy the usual compressibility equation of equilibrium 
statistical mechanics 

kT~~ =1+p f [g(r)-I]dr (14) 

because explicit density dependence of the potential con
tributes to the compressibility in a complicated way. A 
word about the thermodynamics of such systems is in 
order. From the general expression for the Gibbs free 
energy in one-dimension 

G(P,N)=-NlnJo
oo 

exp(-Px)exp[- V(x;P)]dx (15) 

with the nearest neighbor pair potential V dependent on 
macroscopic parameters as indicated, we can see that 
the thermodynamic variable conjugate to the pressure 
is not L, the size of the system, but a variable 

- -
L = L + Nf(P) 

where 

f(P) - Iooo 
[aV(x;p)/ap] exp(- px) exp[ - V(x,P)]dx 

- Io'" exp(- px) exp[ - V(x, P)] dx 

The Gibbs-Duhem relation for fixed temperature 
becomes 

d).J.=vdp, v=ijN=v+f(P). 

It now follows that (as in p. 105 of Ref. 5) 

L (oN) 1 (av af) 
- (NY a; = v+f(P) ap + ap 

and following the derivation of Hill5 we obtain 

kT (1 av 1 af ) 
- v + f(P) :; ap + v ap 

= 1 +Pj[g(2)(r) - 1] dr _ P. fdr aV(r; ).J.jg(2)(r) 
2J' o).J. 

(16) 

(17) 

(18) 

(19) 

- ~2 j j drt drz oO).J. [V(rt;).J.) + V(r2;).J.) + V(rj +r2; ).J.)] 

(20) 
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which reduces to the usual compressibility relation for 
f(P) = O. The explicit form of the variable conjugate to p 
in three dimensions is not apparent; however, the gen
eralized compressibility equation in three dimensions 
should be essentially the same as (20) with a suitable 
f(P) which must be determined. Equation (14) is satis
fied by the pair correlation function of the usual sys
tems considered in statistical physics, which, even if 
forces are not derivable from a density independent 
pairwise additive potential, are supposed to possess 
forces derivable from a more general density-inde
pendent many body potential. 6 The system considered in 
Sec. II cannot correspond to a system with density in
dependent short range many-body potential. The latter 
will not exhibit a one-dimensional phase transition. 

An extension of the inverse approach presented to 
more than one dimension is not straightforward. To ob
tain a consistent set of correlation functions the best 
resort seems to be a geometrical method like the one 
considered in Ref. 1. A system thus defined will in 
general correspond to one with density dependent many-
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body potentials defined again in purely statistical terms, 
i. e., in terms of 

P(Xto ••• ,xN)a:exp[- U(Xto ••• ,XN)], 

the probability that a given region of volume V will con
tain N particles in the configuration (Xl, ... ,x N). Such a 
system will also not obey the compressibility Eq. (14). 
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Direct determination of the Iwasawa decomposition for 
noncompact semisimple Lie algebras 

J. F. Cornwell 

Department of Theoretical Physics, University of St. Andrews, St. Andrews, Fife, Scotland 
(Received 3 December 1974) 

A direct method for the determination of the Iwasawa decomposition of any noncompact semisimple 
real Lie algebra is described in detail. It is based on the canonical form of the Lie algebra. The 
physically important Lie algebras s 0 (3,1), s 0 (4,1), s 0 (3,2). and s 0 (4.2) are treated as illustrative 
examples. 

I. INTRODUCTION 

The Iwasawa1 decomposition plays a key role in the 
construction of the infinite-dimensional unitary irre
ducible representations of the noncompact semisimple 
Lie groups by the "induced representation" method, 
accounts of which may be found for example in the re
views of Mackey, 2,3 Bruhat,4 and Stein. 5 

The usual method for the determination of the Iwasa
wa decomposition of a noncompact semisimple Lie 
algebra involves solving certain simultaneous eigenvalue 
type equations. A description of this approach may be 
found in the book of Hermann, 6 who also gives some ex
amples, and a further typical application [to the Lie 
algebra 80(4,2) - 8u(2, 2)] appears in the work of Kihl
berg, Muller, and Halbwachs. 7 However, this method 
is essentially indirect, for it involves a totally unneces
sary redetermination of the structure of the Lie algebra. 

The present paper describes a much more simple and 
direct method for obtaining the Iwasawa decomposition. 
It is based on the canonical form of the structure of a 
noncompact semisimple real Lie algebra as it is gen
erated through Cartan's t.heorem8,9 by the application of 
an involutive automorphism to the compact real form. 
As is well known, it is particularly convenient to use in 
this process the chief involutive automorphisms in
troduced by Gantmacher. 10,11 Although its main virtue is 
its directness, the method also has the advantage of 
producing the decomposition immediately in the canoni
cal form, which is the most convenient for many appli
cations, particularly those involving semisimple sub
algebras. 12-17 [If, however, another form of the struc
ture is needed in some context, as, for example, in 
discussions of nonsemisimple subalgebras, 18, 19 it is 
easy to construct the mapping from the canonical form. 
In particular, for the Lie algebras 80(P, q) there is a 
Simple mapping20 from the canonical form to the 
form consisting of (p+q)x(p+q) matrices a such that 
tra = 0 and ig + ga = 0, where g is a diagonal matrix with 
P elements + 1 and q elements - 1. ] 

In Sec. II an account is given of the standard theory 
of the Iwasawa decomposition, the direct method of de
termination being described in Sec. III. This involves 
an automorphism V between the two Cartan subalgebras 
that appear. This automorphism V is examined in Sec. 
IV for the case in which the noncompact real Lie alge
bra is generated by an inner involutive automorphism, 
the generalization to outer involutive automorphisms 
being considered in Sec. V. The physically important 
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Lie algebras 80(3,1), so(4, 1), 80(3,2), and so(4, 2) are 
treated as illustrative examples. 

II. THE IWASAWA DECOMPOSITION 

The essential feature of the Iwasawa decomposition in 
a canonical basis is that it involves two Cartan sub
algebras H and H', which are not identical in general. 

The first of these arises in the construction of the 
noncompact semisimple real Lie algebra L itself. It 
may be supposed that L is generated from its compact 
real form L e by a chief involutive automorphism Z, 10-12 

this chief automorphism being defined with respect to 
the Cartan subalgebra H of [, [being the complexifica
tion of L. That is, L = IZL e, where IZ = i(1 - i)Z 
+ i(1 +i)J (I being the identity), and where for a chief 
inner automorphism Z = exp(adh), where h EH, 10-12 

while for a chief outer automorphism Z = Z 0 exp (adh) , 
h EH. Here Zo is an outer automorphism associated 
with a "rotation" in H. 10,11.13 

The conventions and notations of Jacobson21 will be 
used for the canonical form of [. In particular, a typi
cal root defined with respect to H will be denoted by 
a(h), hEH, and e"" its corresponding element inL, will 
be assumed to be such that 

(1) 

for all hE H. For each such root a there exists an ele
ment h"EH such that 

(2) 

for all h E H, B (x, y) being the Killing form of [. It may 
be assumed that the e" are normalized so that 

B(e",e_,,)=-l, 

which implies that 

(3) 

[e",e_"1=h,,. (4) 

A further useful bilinear form is defined by (a, [3) _ 
=B(h",ha)' The remaining commutation relations of L 
are 

(5) 

where N", B = 0 if ()I + [3 is not a root of [. Clearly, N B. '" , . 21 _ . 
=- N""a, and by conventlOn N_""_a-N",,a' Moreover, If 
the a string of roots containing [3 is [3-ra, [3- (r 
-1)0!, ... ,[3, ••• , [3+qa, then the magnitude of N",a is 
given by (N",B)2 =tq(r+1)(a, a), but the signs of the 
N ",Il are to some extent arbitrary. It will be assumed 
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that the rank of [ is l, and that at. a2, ... , a, are the 
simple roots of [ defined with respect to H. The canoni
cal form of the basis of the compact real form Lemay 
then be taken to consist of iha, for a = at> a2,' .. , a" 
together with (e a + e -a) and i (e a - e -a) for every root a of 
[ defined with respect to H. 

The following account of the Iwasawa decomposition1 

is based on the exposition of Harish-Chandra, 22 although 
the notation is quite different. Let P be the maximal 
compact subalgebra of L defined such that a EK if and 
only if a ELand Za = a. Let P be the subspace of L such 
that a E P if and only if a ELand Za = - a. (P is not a 
subalgebra of L. ) Suppose that A is a maximal Abelian 
subalgebra of p, that dimA = m, where m" l, and that 
H{,H2"" ,H:" form a basis for A. LettJ] be a maximal 
Abelian subalgebra of K that commutes with A. Then 
Iwasawa1 showed that the complexification of A EBtJ] is a 
Cartan subalgebra of [. This second Cartan subalgebra 
will be denoted by H'. As dimH' =l, it follows that 
dimtJ] =1- m. If dim/11 > 0, tJ] may be taken to have basis 
elements - iH:"+t> - iH:"+2' ••• , - iHf, so that Hf, H2, ••• , H: 
form a basis for H'. (It should be noted that apart from 
the above requirements the choice of H~, .•• , H; is com
pletely arbitrary. In particular, they need not be asso
ciated in any way with the roots of [ defined with re
spect to H'. ) 

The final stage in the construction of the Iwasawa de
composition involves the determination of a nilpotent 
subalgebra N of L whose elements are linear combina
tions of those of both K and p. This requires the roots 
a'(h') of [ defined with respect to H' and the corre
sponding elements e~. of [ defined such that 

[e~., h'] = a'(h') 

(for all h' EH') and 

B(e~, e~a') = - 1. 

Moreover, let h~.EH' be such that 

B(h', h~.} = a'(h'} 

for all h' EH'. Then 
1 

h~= 6 cJ(a'}Hj 
J=t 

(6) 

(7) 

(8) 

(9) 

[where the coefficients c J( a'} are all reat22], and the 
root a' (defined with respect to H') is said to be a mem
ber 01 the set P' if and only if c J{ a') > 0, where j is the 
least index such that C J{ a') ;< O. (That is P' is the set of 
"positive" roots of [ with respect to H'. ) The set P' 
may be divided into two disjoint subsets P~ and P~ by the 
requirement that a' E P~ if and only if a' E P' and 

a' (Zh') = Ci' (h') (10) 

for all h' EH', and by the requirement that a' E P~ if 
and only if a' E P' and a' </. P~. If N is the subspace of 
[ spanned by the elements e~ for all a' E P!, then 
Iwasawa1 has shown that N is a nilpotent subalgebra of 
[. !he required subalgebraN of L is finally defined by 
N =N n L. The Iwasawa decomposition of L is then 

L =KEBAffiN, 
where ffi denotes here that L is the vector-space direct 
sum of K, A, and N, and does not imply that K, A, and 
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N mutually commute. The subalgebra of L that plays 
such a vital role in the induced representation method2- 5 

istJ] EBA EBN. 

It will be clear that whereas the determination of K, 
A, andtJ] is completely straightforward, the construc
tion on N presents more difficulties. The usual meth
od6,7 consists of treating Eq. {6}, or more precisely 

[e~" Hj] = Ci'(HJ}e~., j = 1, ..• , l, (11) 

as a set of 1 simultaneous eigenvalue equations in order 
to determine the "eigenvalues" a'{Hi} and the "eigen
vectors" e:". As will be shown in Sec. III, this is total
ly unnecessary, for the e:., are Simply automorphic 
images of the ea. 

III. DIRECT DETERMINATION OF THE IWASAWA 
DECOMPOSITION 

The direct determination of the Iwasawa decomposi
tion is based on the fact that there exists an inner auto
morphism V that maps H' into H. (In fact any two Cartan 
subalgebras of [ are related by an inner automor
phism. 10) Suppose that Vh' =h, where h' EH' and h EH. 
On applying V to Eq. (6) one obtains 

[Ve~, h) = a' (V-1h)(Ve:"), 

which implies that a'(V-1h} isa root of [ with respect 
to H and Ve~. is the corresponding element of [. Let 
a'(V-th} be denoted by a(h); that is, 

a{h) = a'(V-1h). (12) 

Equation (12) establishes a one-to-one correspondence 
between the roots defined with respect to H and the 
roots defined with respect to H'. Moreover, as the 
Killing form is invariant under automorphisms, Eqs. 
(3) and (7) imply that 

and conversely 

Similarly Eqs. (2) and (8) imply that 

Vh:"=h a • 

Now suppose that Hi> H2, ••• ,H, of H are defined by 

HJ=VHJ, j=l, ... ,l. 

Then Eq. {9} becomes 

(13) 

It is now possible to define a set P of roots a defined 
with respect to H by the requirement that a E P if and 
only if the corresponding root a' defined with respect 
to H' is a member of p'. With the further definition 
that bJ{o} =c J{O'), j = 1, ... ,1, Eq. (13) becomes 

(14) 

Thus 

a E P if and only if bJ(a) > 0, where j is the least index 
such that bJ(a);<O. (A) 

In the same way one may define the sets P_ and P+ of 
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roots Q defined with respect to H by the requirement 
that Q E p. or p. if and only if the corresponding root 
Il' defined with respect to H' is a member of P~ or P~, 
respectively, Eqs, (10) and (12) imply that Il E p. if and 
only if O!EPand O!(VZV-lh) = O!(h) for allhEH. However, 
this criterion can be further refined, for Hi> H2, ••• , H, 
form a basis for Hand VZV-1HJ =HJ for j =m +1, 
m + 2" .. ,l, but VZV-1HJ =- HJ for j = 1, 2, ... , m. Thus 

Q EP. if and only if O!EP and O!{HJ) =Ofo1' j =1, 2, ... , m. 

(B) 
Also, 

O! E P + if and only if O! E P and O! i P .' (C) 

The subalgebraN is then easily characterized as 
being the subalgebra spanned by the elements V-1e a for 
all O! E p •. 

To summarize, the procedure for determining A, m, 
and N consists of the following six stages: 

(1) Choose a basis Hf, ••. , H:" of A and a basis 
- m:".h .. , ,- m; ofm. 

(2) Find the inner automorphism V. (This step is 
discussed further in Secs. IV and V. ) 

(3) Evaluate HJ = VHj, j = 1, ... ,l. 

(4) Determine the sets P, p., and p. by criteria (A), 
(B), and (C), respectively, 

(5) Evaluate V-1e a for all O! E p., these being the 
basis elements of fl. 

(6) Determine N by the definition N = fl n L . 

IV. IWASAWA DECOMPOSITION FOR REAL LIE 
ALGEBRAS GENERATED BY CHIEF INNER 
INVOLUTIVE AUTOMORPHISMS 

A. General theory 

The chief inner involutive automorphism Z = exp(adh) 
is diagonal with respect to the canonical basis of L c 

described in Sec. II. The basis elements iho" for Q = O!J, 
j = 1, ... , l, all correspond to eigenvalue + 1, while 
(e ex + e -ex) and i (e ex - e .ex) both correspond to eigenvalue 
exp{O!(h)} (=± 1). [Expressions for h and for exp{O!j(h)}, 
j = 1, ... , l, for every classical simple real Lie algebra 
generated by an inner involutive automorphism are 
given in Ref. 12, the corresponding expressions for the 
exceptional Lie algebras being given in Ref. 16.] 

K therefore has a basiS conSisting of ih"" for O! = O!j, 
j =1, ... ,l, together with (e",+e.a) and i(e a - e.a) for all 

Q such that exp{0!(h)}=1, while the basis of p consists 
of i(e a + e. 0.) and (e a - e. a) for all 01 such that exp{ 01 (h)} 

TABLE I. Dimensions of L. K. A. It!, andN for the real 
forms L of [=A 1, l2: 1. 

L su(l + 1-p,p), sl(l + 1, R) q(l+ 1)/2 
O:s p:s ~(l + 1) lodd 

dim[ l2 + 2l l2 + 2l l2 + 2l 
dimK l2 + 2l - 2lp - 2p + 2p2 ~l(l + 1) W+1)(l+2) 

dinY/ p 1 t!Z-1) 

dinyi'J l-p 0 ~(l + 1) 
diIIW p(2l+1-2p) ~l(l + 1) t(l2 -1) 
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TAB~ II. Dimensions of L, K, A, Ih. andN for the real forms 
L ofL =B" l2:1. 

L 

dim[ 
dimK 
dill)4 
dirry}) 
diIl}\! 

so(21+1-2p,2p), 
o:sp:stl 

2l2+l 
212+l- 4lp +4p2_ 2p 
2p 
l-2p 
4p(Z-p) 

so(21 + 1-2p, 2p), 
tl<P:Sl 

2l2 + 1 
212 + l- 41p + 4p2 - 2p 
2(l-pl+1 
2P-l-1 
41p+4p _4p2_ 2l-1 

= - 1. Thus A may be taken to have a basis consisting 
of elements of the form i(ea+e.a). Let RJ4 denote the set 
of positive roots 01 that appear this way in A. In order 
to ensure thatA is Abelian, RJ4 must be chosen so that 
if (3 and yare any two roots in ~ then neither (3 + y 
nor (3 - y is a root of [. Similarly, m may be taken to 
have a basiS consisting of elements of the form (e ex + e -ex) 
(with the set of positive roots 01 appearing this way in 

/11 being denoted by 101), together possibly with some 
elements of H n L. Rm is characterized by the require
ment that for any two root~ f3 and y of Ri! U 1o/l1 neither 
(3+y nor {3- y is a root of L, while if h' EH n L is a 
member of/l1 then 01 (h") = 0 for all 01 E RA U R;n. 

The required inner automorphism V that maps H' 
into H is then given by 

V=TI Va, 
a 

where 

Va = exp[ad{iaa(e a - e.",)}J, 

aa = 1T/{8 (O! , O!W 12, 

(15) 

and the product in (15) is over all roots 01 of RJ4 U 1o/l1. 
This may be seen as follows. Firstly, if Hj=i(e,,+e.,,), 
1 $,j $,m, is a basis element of A chosen as above, then 

VaHj = - {2/(a, 0I)}1/2h" 

[Eq. (A2) of the Appendix), which is certainly inH. 
Moreover, if {3 E R.A U R;n and {3* Il, then V" commutes 
with Va and V £It", =ha. Thus 

Hj =VHj=-{2/(0!, 1l)}l/2h a , (16) 

so that V maps A into H. The same is immediately true 
for the subspace of /11 spanned by the basis elements 
-iHj=e",+e_"" as again HJ=i(ea+e.a ). It remains only 
to consider the subspace of/l1 spanned by basis elements 
in H n L. By the above construction every Vain V leaves 
these elements invariant, so that if - iHj = ih", then 

(17) 

All the properties of the inner automorphisms Va and 
their inverses v-.: that are needed for stage (5) of the 

TABLE m. »imensions ofL, K, It, Ih, andN for the real 
forms L of L =C,• l2: 1. 

L 

dim[ 
dim/( 
dinyj 
diny'h 
diIIW 

nsP~f. 
o:SP:S~l 

212 + 1 
212 + Z - 41p + 4p2 

P 
I-p 
p(4l-4p-l) 

sp(I.R) 

212+1 
Z2 

1 
o 
12 
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TABLE IV. Dimensions ofL, K,A,/h, andN for the real formsL ofl =Dl' 1~2. 

L so(21- 2p, 2p), 
o:sp:sjl 

212+l 

so(21- 2p - I, 2p + I), 
Q:sp<!1 

212+l 

ND21, 

lodd 

2l2+l 

ND21 , 
1 even 

2l2+l dimL 
dim/( 
diD¥1 
din:y}j 
diII}'\! 

212 -l- 41p+4p2 
2p 

2z2 - 31 +4p2 -4lp+ 1+ 4p 
2p+l 

l2 
!(l-l) 
4(1+1) 
4(1-1)(21-1) 

l2 
4l 

1-2p l- 2p-l 
2p(21- 2p - 1) 21- 4p2+4lp- 2 - 6p 

procedure of Sec. In are summarized in the Appendix. 
It should be noted that if a E RA U % then Eq. (16) im
plies that ... a E P+, so that [ by Eq. (A4)] y-le _a 
=- t(e a- e_a) - i{2/(a, a)}1/2ka is a basis element of 
both fJ and N. 

The dimensions of K, A, In, and N for all the simple 
classical Lie algebras are listed in Tables I to V. These 
dimensions are easily calculated, In particular, dimK 
=HdimL - 15}, where 15 is the character of L, 8,9,11,12 

dimln =l-dimA, and dimN=dimL -dimA -dimK, 
while dimA can be determined in all cases by an argu
ment along the lines indicated in Sec. V. 

B. Examples 

1. L = so (4, 1 ) 

The positive roots of L = B2 are at. a2, al + a2 and 
al + 2a2' The chief inner involutive automorphism Z 
= exp(adh) generating L = so(4, 1) may be chosen12 so that 

exp[al(k)] =exp[(al +2(2)(k)] =1, 

exp[a2(k)] =exp[(al + (2)(k)] =-1. 

Thus K has as its basis ika with a = at. a2, together with 
(e a +e_a) and i(e a - e_a) with a = at. al +2a2' Similarly, 
P has basis elements i (e a + e -a) and (e a - e -a) with a 
= a2, al + a2. Clearly, A is one-dimensional and may be 
chosen to have basis element Ht = i (e a + e -a) with a = 02' 
In is also one-dimensional, and its basis element may 
be taken to be - iH~ =ihs, where {3 = al + a2 [ as a2(hS> = 0], 
Thus RJ4 = {a2} and 101 is empty, so V = Va with a = a2. 
It follows from (16) and (17) that HI =-{2/(a, a)}i/2ka 
with a = a2 and H2 = - hs with {3 = 01 + a 2• On applying 
criteria (A), (B), and (C) one obtains P={at. - a2, 

-(al+a2),-(al+2a2)}, P_={-(al+a2)}, andP+ 
={at. - a2, - (01 +2(2)}' Thus from Eqs. (A4) and (AS), 
and as (a2, (2) = t, the basis elements ofN are 

V.;
1
2e al = te al + i2-

1 
1
2s1e al +a2 + ts2e al+2a2' 

V-I - l( ) '31/2k a2
e-a2 - - z e a2 - e_a2 - Z a2' 

V-I _l '2-1/2 l a{-Cal+2a2) - ze-Cal+2a2) +z sls2e_Cal+a2) + 2s2e_al' 

where SI =sgnN-a2,al+"2' s2 =sgn(N"2,al+a2N-a~,al+a2)' 
The basis elements of N may therefore be taken to be 

1 ( ) '2-112 ( ) 2" eaj +e_aj +Z SI e al+a2 +e-Cal +a2) 

+ tS2 (e al +2a2 + e -Cal +2"2 », 

1 • (e ) 2-1/2 ( ) 2Z al - e_al - sl e al+a2 - e- Cal+a2) 

+ tis2(eal+2a2 - e-Cal+2a2»' 
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2. L = so(3,2) 

il 
il(21-3) 

L is again a real form of L =B2• The chief inner in
volutive automorphism Z = exp(adh) generating L 
= so(3, 2) may be chosen12 so that 

exp[(al + (2)(h)] = 1, 

exp[ al (k)] = exp[ a2(k)] = exp[ (al + 2(2)(k)] = - 1. 

Then K has basis ika with a = at. 02 together with 
(ea+e_a) and i(e a - e_a) with a= al + a2, whileP has 
basis i(e a +e_a) and (e a - e_a) with a = at. a2 and at + 2a2. 
In this case m = dimA = 2, and the basis of A may be 
chosen so that 

Ht =i(e al +e_al ), H~ =i(e al+2a2 +e-Caj+2a2»' 

The dimension ofln is zero, so RA ={at. al + 2a2}, R;n 
is empty, and 

V= Val Val+2a2' 

It follows that 

HI =- {2/(aj, a l )}i/2hal , 

H2 = - {2/ (a l + 2a2, al + 2(2)P 12{hal + 2 h a2}, 

where (anat)=(al+2a2,al+2a2)=t, Criteria (A), (B), 
and (C) give P = P+ ={- at. a2, - (al + (2), - (al + 20!2)} with 
P_ empty. Thus the basis elements offJ are [on using 
Eqs. (A4), (A6), and (A7)] 

v-Ie_at = - t(e al - e_at ) - ti61/2kal' 

V-I _.!( ) 1. '( ) e a2 - 2 e a2 - se_a2 - 2ZS e al+a2 - se-Cal+a2) , 

V-II. '( ) 1 ( ) e-Cal+a2) =2ZSS e a2 +se_a2 +2S e al+a2 +se-Cal+a2) , 

V-Ie at +2a2 = - t(e al +2a2 - e-Cal+2a2» - ti61 12{k al + 2k a2}, 

where s = sgn(N ai' aJoN at+2"2' -a2)' S' = sgnN ai' a2' The basis 
elements of IV are then 

l ( ) 1 '61/2k - ~ e al - e_al - 2Z ai' 

t(e al+2a2 - e-Cal +2a2» - ti61 12(ka
l 

+ 2k a2 ), 

l( ) l' '( ) 
2 e"2 - e -a2 - 2 ZS e al +a2 - e -C al +a2) , 

ti(e a2 +e_a2 ) +ts'(eal+a2 +e-Cat+a2»' 

TABLE V. Dimensions of L, K. A.Ih.~andN for the simple 
real forms L whose complexifications L are semisimple. . 
L sl(!I+ I, C), so(I,C), sp(il.C). so(l+ I, C), 

I even 1 even I even I even 

di~ W+21 12+ I 12 + I 12 + I 
di oll2+1 !(12 +Z) i(l2 + Z) i(12 + Z) 
dinyj fI il il il 
dmrn il il il il 
diII}'\! oll2 +il iz2 W W 
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3. L = so (4,2)[ -su(2, 2)] 

In this case [ =Ds(-As), whose positive roots are 
0'10 0'2, O'S, 0'1 + 0'2, 0'1 + O'S' 0'1 + 0'2 + O's. The chief inner 
involutive automorphism Z = exp(adh) generating L 
= so (4, 2) may be chosen12 so that 

exp[O'(h)]={ 1, Q=0'2,O'S, 
-1, 0'=0'10 0'1+0'2,0'1+O'S, 0'1 +0'2+ O's. 

This implies that K has basis ih", with 0' = 0'10 0'2, O's, 
together with (e", + e.",) and i(e", - e.",) with 0' = 0'2, O's, 
whereas p has basis i(ea + e.",) and (e", - e. a) with 0' 
= 0'10 0'1 + 0'2, 0'1 + O's, 0'1 + 0'2 + O's. A is two-dimensional, 
and its basis may be chosen so that 

Hf =i(e"'1 +e·"'1)' H~ =i(e"'1+"'2+"'S +e.<a1+"'2+"'S»· 

In is one-dimensional with 

- iH~ =i(h"'2 - h",s)' 

Thus R.A U R;n ={O'1o 0'1 + 0'2 + O's} so that 

V= V"'1 V"'1 +"'2+ "'S 

and hence 

H1 =-{2/(O'1o 0'1)}1/2h"'1' 

H2 =- {2/(0'1 + 0'2 + O's, 0'1 + 0'2 + O's>p!2(ha +h", +h", ), 
1 2 S 

HS =- h"'2 +has' 

where (0'10 0'1) = (0'1 + 0'2 + O's, 0'1 + 0'2 + O's) = t Criteria 
(A), (B), and (C) then imply that P=P+={- 0'10 0'2, O's, 
- (0'1 + 0'2), - (0'1 + O's), - (0'1 + 0'2 + O's)} with p. empty. By 
Eqs. (A4), (A6), and (A7), /II spanned by the basis 
vectors 

V·1e a =-~(ea _e.",)_i21/2h"" (18) • 1 1 1 1 

V·
1
e·<"'1+"'2+"'S) =- ~(e"'1+"'2+as - e·<"'1+"'2+"'S» 

- i21/2(h", +h", +h",), (19) 
1 2 S 

together with 

V·
1
e "'2 = t[e "'2 - i{sgnN "'1 + "'2 +"'s' ·<"'1+"'S)}e·<"'1+"'S) 

- i{sgnN "'1' "'2}e "'1 +"'2 

- {sgn(N "'1' "'2N "'1+"'2+"'S'·"'s }e·",s]' 

v·1
e·<a1+"'2) = t[ e ·<"'1 +"'2) - i{sgnN "'1+"'2+"'S' ·<"'1+"'2)}e "'s 

- i{sgnN "'1'·< "'1+"'2)}e·"'2 

- {sgn(N "'1' ·<"'1+"'2)N "'1+"'2+"'S' ·"'2)}e a 1+",s]' 

and v·1e",s' v·1e.<"'1+aS)' which are given by similar ex
pressions with 0'2 and O's interchanged. By virtue of the 
identities21 

(and similar identities with 0'2 and O's interchanged), and 

it follows that the six basis elements of N may be taken 
to be (18) and (19) together with 

~(e "'2 +e·"'2) - ~{sgnN "'1' "'2}(e "'1 +"'2 +e·<"'1+"'2»' 
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~(e 012 - e. a2 ) + MsgnN "'1' "'2}(e "'1+"'2 - e.<a1+"'2»' 

and two similar expressions with 0'2 replaced by O's. 

V. IWASAWA DECOMPOSITIONS FOR REAL LIE 
ALGEBRAS GENERATED BY CHIEF OUTER 
INVOLUTIVE AUTOMORPHISMS 

A. General considerations 

The chief outer involutive automorphism Z 
=Zo exp(adh) of Le and [ is such that10, 11,1S for the 
simple roots a1o"" a, , , 

Zoh", = 6 TJ,}ta, Zoe""" = 6 TJke""" , 
J k=1 k J k=1 k 

while for each nonsimple root Q =2:}=1 KJaJ 

where 

a" = t t TJkKJak 
J=1 k=1 

(20) 

and X", = ± 1. The sign of X", is such that Xa = + 1 for a 
simple, X"'+B={N,.-,/I"/Na,JXaXB' and X.", = X"'· That is, 
Zo is specified by a "rotation" T in the root space of [ 
(or alternatively in H), this rotation corresponding to a 
transformation that leaves invariant the Dynkin 
diagram of [. 

The major difference from the case considered in 
Sec. IV is that Z is not diagonal if the basis of Leis 
taken to consist of iha, a = a 10 ... ,a" together with 
(e", + e.",) and i (e '" - e .01) for all a. In general the eigen
vectors of Z are linear combinations of the iha, 
a = Q10 ... ,0'" or of the form (e", +e.",) ± (e 01"+ e.",,,) and 
i(e",- e.a)±i(ea,,- e.a,,), where ea and ea" are related by 
(20). Only when a" = 0' do the simple combinations 
(e a + e .01) and i (e a - e. a) remain eigenvectors of Z. Thus 
Z has three types of eigenvector in L e' namely: 

type I: linear combinations of the iha, 0' = 0'10 ••• , 0'1; 

type II: (e",+e.",)± (ea,,+e.a,,) and i(e a - e.a)±i(e",-
- e.a") (which occur when 0'''"* a); 

type III: (e", + e.",) and i (e a - e.",) (which occur when 
ex"=a). 

It will be shown in the subsequent subsections that in 
every case A andln can be constructed so that their 
basis vectors are formed from eigenvectors of types 
I or III alone. This implies that the automorphism V is 
either the identity or is again of the form (15). 

B. Iwasawa decompositions of the real Lie algebras 
= sl (/ + 1, R) and q (J + 1 )/2 of I = AI for I;;:;' 2 

In this case1S 
TJk = 6", '+1.J' j, k = 1, ... ,l, which corre

sponds to the transformation exJ - ex l +1.J' j =1, ... , l, of 
the Dynkin diagram of A,. 

Suppose first that l is even. In this case there is only 
one real form generated from L e = su (l + 1) by a chief 
outer involutive automorphism, namely L = sl(l + 1, R), 
for which Z = Zo [i. e., Z = Zo exp(adh) with h = 0]. p con
tains the ~l basis elements 

hOI - hOI ,j = 1,2, ... , tl. 
J '+1·J 

(21) 
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The only eigenvectors of Z that commute with the set 
(21) are those of type III, which..ocCtir13 for the tz roots 

(22) 

As X '" = - 1 for all such 0', these eigenvectors all give 
members of P. Moreover, the set of tz elements 
i(e",+e_",), where 0' is given by (22), mutually commute 
with each other. Thus A may be chosen so that its basis 
consists of this set and the set (21), so that dimA =Z. 
Hence dim!11 = 0, so R;i U R;n is the set (22) and V is 
given by (15). 

Now suppose that Z is odd. Then both L = sl (l + 1, R) 
and q 0+0/2 are generated from L c = sU(l + 1) by chief 
outer involutive automorphisms Z = Zo exp(adh). In both 
cases P contains the t(I-I) basis elements 

h", -h" 1 ' j=I,2, ... ,t(l-I). (23) 
J 1+ -J 

The only eigenvectors of Z that commute with the set 
(23) are those of type III, which now occur for the 
t(l + 1) roots 13 

J 

0'=:0 0'_+0+0/2, j=O,I, .•. ,t(I-I). 
_=-J 

However, for all such 0' X",exp[O'(h)]=-1 for L 
=sl(I+I,R) while X",exp[O'(h)] =+1 for L =qO+l)/2, so 
these eigenvectors give members of P for sl (I + 1, R) 
but for QO+i)/2 they are members of K. In both cases 

(24) 

the set of t(l + 1) elements i(e '" +e_",) commute with each 
other. Thus, for L =sl(l+I,R), A may be chosen so that 
its basis consists of this set and the set (23), so that 
dimA = I, dim!11 = 0, R;i U Rfn is the set (24), and V is 
again given by (15). On the other hand, for L =QO+0/2' 
A may be chosen so that its basis is the set (23) alone. 
Then dimA = t(l - 1) and hence dim!11 = t(l + 1). The 
simplest choice of basis elements of!11 is 

ih ih +ih ih +ih ... ih +ih . 
"'(1+0/2' "'1 "'1'''2 "'1-1' , "'0-1>/2 "0+3)/2 

Thus, for L =QO+1>/2, H' andH coincide, and V can be 
taken to be the identity mapping. 

C. Iwasawa decompositions of the real Lie algebra 
= so (21- 2p - 1, 2p + 1) (0 ~p < %!) of 
L =D, for 1~2 

In this case14 
7J_ = 0J_' j, k = 1,2, •.. ,1- 2, and 71_1,_ 

= 0a, 71_ = 151_1,_, k = 1, ... , l, which corresponds to inter
changing 0'1-1 with 0'1 in the Dynkin diagram, all the 
other roots 0' 10 , .• , 0'1-2 remaining unchanged. More
over, X" = + 1 for all o. It follows from the form of l' 
that 

hl!=h -h (25) 
"1_1 "'I 

is a member of p. In order to distinguish the eigen
vectors of Z of type III it is convenient to intro
duce10,12,14 the I linear functions EJ(h), j = 1, ... , I, IZ EH, 
such that 

\ 

O'J(h) + O'J+! (h) + .•• + 0'1_2 (h) + tOI_1 (h) ~ to'I(h), 

(h) 
= J~I-2, 

EJ 1 1 • 
20'1_l(h) + 20'1 (h), J=I-I, 

-to l _1(h)+to l (h), j=l. 

Then EJ(h) ± E_(h) for 1 ~ j < k ~ I are the set of positive 
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roots of [ with respect to H. Zo corresponds to re
placing EI(h) by - EI (h) with E1 (h), E2(h), ••. , EI_l (h) all re
maining unchanged. Thus the roots 0' corresponding to 
eigenvectors of Z of type III are E /h) ± E_ (h) for 1 ~ j < k 
~ 1- 1. These are the only eigenvectors which commute 
with the element hI! of (25). A mutually commuting sub
set is given by (e,,+e_,,) with 

0' =EJ±E_, 

(" k) _{ (1, 1- 1), (2,1- 2), ... , (t(l + 1), t(l + 1», 1 odd, 
J, - (1,1-I),(2,1-2), ... ,(tl-l,t1+l), 1 even. 

(26) 

For L = so(21- 2p-l, 2p + 1) with p ~ 1 the chief outer 
involutive automorphism Z = Zo exp(adh) generating L 
may be chosen14 so that exp[O'I-P_l(h)] =-1 and exp[O'J(h)] 
= + 1 for j"* I - P - 1. Then 

{
I 1- P -1 <j 

exp[€J(h)]= -1: j~l-P-l: (27) 

Similarly, 14 for p = 0, exp[ 0'1-1 (h)] = exp[O'I (h)] = - 1 and _ 
exp[O'/h)] = 1 for j = 1, •.. ,1- 2, which again implies 
(27). As exp[E/h) ±€_(h)] = - 1 if and only if j ~ 1- P - 1 
<k, it follows thatA may be chosen to have as its basis 
the element h" of (25) together (for p ~ 1) with i (e " + e -",) 
with 0' = Ej ±€_ and (j, k) = (1, I-I), (2,1- 2), ... ,(p, 1- Pl. 
Thus dimA = 2p + 1 and so dim!11 = I - 2p - 1. 

For p ~ 1 there are two subcases to be considered. If 
Z is odd then!11 may be chosen to have as its basis the 
(I - 2p - 1) elements (e", + e_,,) with 0' = EJ ±€k and (j, k) 

= (P + 1, 1- P -1), (p + 2, 1- P - 2), ... , (!-(l- 1), ~(l + 1)). 

Then R,,4 U R!11 is the set (26), and V is again given by 
(15). If I is even then!11 can be taken to have as its basis 
the 1- 2p - 2 elements (e" + e_,,) with 0' =EJ±€k and (j, k) 
= (P + 1, 1 - P - 1), (P + 2, 1- P - 2), ... , (tl- 1, tl + 1), 
together with 

i(h" +h" + ... +h" +th" +~h,,). 1/2 1/2+1 1-2 1-1 I 

Again R;i UlYn is the set (26) and V is given by (15). 

For p = 0, dimA = 1, andA may be chosen to that hI! 
of (25) is its basis element. The most convenient 
choice of base for!11 is then 

ih" ,ih" , ... ,ih" ,ih", +ih" , 1 2 1-2 1-1 I 

so that for L =so(2l-1, 1), H' andH coincide, and hence 
V may be taken to be the identity mapping. 

Example. L =so(3, 1) (-sl(2, e)): In this case [ 
= D2 (- Al $ A 1) whose positive roots are 0'1 and 0'2. The 
chief outer automorphism Z = Zo exp(adh) generating 
L =so(3, 1) is such that exp[O'l(h)] =exp[0'2(h)] 
= - 1, so that K has baSis 

ih"1 +ih"2' {(e"1 +e_"ll - (e"2 +e_"2)}' 

i{(e "1 - e_"1) - (e "2 - e_"2)}' 

and P has basis 

h"l- h"2' i{(e"1 +e_"l) + (e"2 +e_"2)}' 

{(e"l- e_"1) + (e"2 - e_"2)}' 

Then dimA = 1, dim!11 = 1, and the basis elements Hi of 
A and Hf of!11 may be chosen so that 
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Hf=ih"'1+ ih "'2' - iHf=h"'1- h"'2' 

As V can be taken to be the identity mapping Hl = H£ and 
H2 =Hf. Criteria (A), (B), and (C) imply that P=P+ 
={O't> - 0'2}, p. being empty, so thatA' has basis V·1e", 
= e '" for 0' = al, - a2' The basis elements of N may there
fore be taken to be 

D. Iwasawa decompositions of the real Lie algebras 
= N£~ and NE':, of r = £6 

The development for this case is very similar to that 
given in subsection B for the real forms of AI' The out
er automorphism Zo may be taken11,16 to correspond to 
the transformation of the Dynkin diagram in which 
0'1 - 0'5' a2 - 0'4, but 0'3 and 0'6 are left invariant. p 
therefore contains the two basis elements 

h"'l - h"'5' h"'2 - ha4· (28) 

The only eigenvectors of Z that commute with the set 
(28) are those of type III, which occur16 for 

0'1 + a2 + 0'3 + a4 + 0'5' 0'1 + a2 + a3 + a4 + a 5 + as, 

0'1 + 2a3 + 0'4 + as, al + 0'2 + 2Q3 + a4 + a 5 + O's, 

al + 2a2 + 2a3 + 2a4 + 0'5 + O's, 

0'1 + 2a2 + 30'3 +20', + 0'5 + 0'6,0'1 + 2Q2 + 3a3 + 20'4 + a 5 + 20's, 

for all of which X a = + 1. 

For L =N~ all of these type III eigenvectors give 
members of P, so that A may be chosen to have as its 
basis the set (28) together with i (e a + e.",) for 0' E RA 
= {O's, 0'2 + 2 a3 + a4 + (\Is, 0'1 + a2 + 2 0'3 + 0'4 + 0'5 + Qs, 
Q1 + 2 a2 + 2 0'3 + 2 a4 + 0'5 + O's}. Thus dimA = 6 = l, so dim!l1 
=0. Hence RA UR;n =~ and V is again given by (15). 

For L = NE: all of the type III eigenvectors are mem
bers of K, so A may be chosen to have as its basis 

ihal + ih a5, ih"'2 +ih"'4' ih"'3' ih as ' 

As H' =H, V may be taken to be the identity mapping. 

E. Iwasawa decompositions of the simple real Lie 
algebras sl (n,C), so(n,C), sp(n, C) which are generated 
from semisimple compact Lie algebras by outer 
involutive automotl?hisms 

Suppose that L c = L lc EEl L 2c' where L lc and L 2c are 
isomorphic simple compact Lie algebras. Let ih".., 
0' = a1, • .. , 0'1/2, (e".. +e~",), i(e".. - e~",) be ~he Easi~ of 
L kc' k = 1, 2. (Here l denotes the rank of L = L 1 EEl L 2 and 
is necessarily even. ) For the chief outer involutive 
automorphism Z = Zo exp(adh) generating the simple 
noncompact real form L of [ one may take15 h = O. Zo 
has the property15 that 

Zoh~ =h~, Zoh~ =h~, 

Zoe!", = e;"" Zoe;", = e!",. 

Thus K contains the elements 

ih~ + ih~, O! = Ql, ... , a l /2, 

and P contains 
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(29) 

h~ - h~, a = at> .•. , a l /2' (30) 

As no other eigenvectors of Z commute with this subset 
of P, dimA =dim!l1 = !l, andA and!l1 can be taken to 
have as their bases the sets (30) and (29), respectively. 
Thus H' =H and V can again be taken to be the identity 
mapping. 

APPENDIX: PROPERTIES OF THE AUTOMORPHISM 
V", 

By definition 

V", = exp{ad[ia",(e a - e.a)]}, 

where 

a", =JT/[8(Q, 0!)]1/2. 

Then, as 

[exp(adA)]B =B + [A, B] + (1/21 )[A, [A, B],] + .. " (AI) 

it follows from Eqs. (1) and (4) that 

V",[(e", +e.",)] =i[2/(0', a)p /2h"" 

V ",[i(e a - e.",)] =i(e '" - e.",), 

V",(ih",) =- [(a, a)/2]1I2(e",+e.",). 

(A2) 

In the application of stage (5) of Sec. III it is neces
sary to know V.;le y for various roots y defined with 
respect to H. There are six cases to be considered: 

(1) y= a or - 0': 

V.;le", = !(e", - e.",) - !i[2/ (a, a)]1/2h"" 

V.;le.",=_ !(e",-e.",)- !i[2/(a, a)]1/2h",. 

(A3) 

(A4) 

(2) The 0' strong containing y has only one member 
and y*O',- 0': 

(A5) 

(3) The 0' string containing y has only two members: 

(a) if y is the first member of the string 

V.;ley = 2.1 /2e y - i2·1 !2(sgnN ""y)ey+a; (A6) 

(b) if y is the second member of the string 

V.;le y = - i2·1 /2 (sgnN ""y.",)ey.", + 2.1 /2e y. (A 7) 

(4) The 0' string containg y has only three members: 

(a) if y is the first member of the string 

V.;le y = ley +i2·1 /2 (sgnN.a, y+",)e y+a 

(A8) 

(b) if y is the second member of the string 

V.;le y = - i2·1 /2 (sgnN a,y)ey+", +i2·1 /2 (sgnN.a,y)ey•a; 

(A9) 

(c) if y is the third member of the string 

V.;le y = ley - i2-1 /2(sgnN ""y_",)ey_", 

+ ![sgn(N a,y_aN.a,y.",)]ey.2a' (AID) 

(5) The a string containing y has four members: 

(a) if y is the first member of the string 

V-1e = 8-1 /2{e _ i3 1 /2 (sgnN )e 
c¥ ,. " a,,, y+a: 
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- 31 !2[sgn(N ... ,.N ... r+ .. )]er+2 .. 

+i[sgn(N ",rN ... r+",N ... r+2",)]e r+3J; (All) 

(b) if y is the second member of the string 

V-1e =- S-1/2{i31/2(sgnN )e +e a "1 o,Y-CK y-a ,. 

+i(sgnN "',r)e r+", + 31/2[sgn(N "",.N""r+",)]er+2J; 

(A12) 

(c) if y is the third member of the string 

+i sgn(N ""r-",)er _", +er +i31/2(sgnN ... r)er .",}; 

(A13) 

(d) if y is the fourth member of the string 

V.;1er = S-1/2{_ i[sgn(N ""r_3",N ... r_2",N ... r_",)]er _3", 

- 31
/
2[sgn(N ... r_2 .. N ... r- .. )]er -2Ot 

(A14) 

Equations (A3) and (A4) follow immediately from (A2), 
while (A5) is a consequence of the result that [e."" er] 

= O. The remaining equations follow from (A1) by re
peated use of (1), (4), and (5), together with the identity 
N a, r-'" = - N a, -r and the fact that if the a string containing 
y is y - ra, ••• ,y, ... , y +qa, then (N ... r)2 = tq(r + l)(a, a). 
These are the only possible cases as the a string con
taining y never has more than four members. 21 

Note added in proof: The principal nondegenerate 
series of unitary irreducible representations of a semi
simple noncompact Lie group is induced from a sub
group having In ffiA ffiN as its Lie algebra if the set p_ 
is empty, which is the case for the Lie algebras of all 
the "complex" groups sl (n, C), so(n, C), and sp(n, C) as 
well as for many others, including so(3, 2), so(4, 2), 
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and so(2, 1). If P_ is nonempty In must be replaced by 
C(A), the centralizer of A in K, which consists of In 
tog~ther with the intersection with L of the subspace 
of L generated by V-1 ea and V-Ie_", for all a E P_, and 
which is therefore easily determined by the methods 
of this paper. 
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Two-point characteristic function for the Kepler-Coulomb 
problem 

S. M. Blinder 

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104 
(Received \0 March 1975) 

Hamilton's two-point characteristic function S(q2t2,qiti) designates the extremum value of the action 
integral between two space-time points. It is thus a solution of the Hamilton-Jacobi equation in two sets 
of variables which fulfils the interchange condition S( qi ti, q2 t2) = - S( q2 t2, qi ti)' Such functions can be used 
in the construction of quantum-mechanical Green's functions. For the Kepler-Coulomb problem, 
rotational invariance implies that the characteristic function depends on three configuration variables, say 
rl> r2, ri2· The existence of an extra constant of the motion, the Runge-Lenz vector, allows a reduction to 
two independent variables: x= ri + r2 + rl2 and y= ri + r2 - ri2' A further reduction is made possible by virtue 
of a scale symmetry connected with Kepler's third law. The resulting equations are solved by a double 
Legendre transformation to yield the Kepler-Coulomb characteristic function in implicit functional form. 
The periodicity of the characteristic function for elliptical orbits can be applied in a novel derivation of 
Lambert's theorem. 

1. INTRODUCTION 

Hamilton's two-point characteristic function can be 
defined as the action along a real trajectory connecting 
two space-time pOints i : 

S(q2t2,qltt) 00 Jt~2 L(q,q, t) dt. (1) 

By Hamilton's principle, the value of the integral be
tween two fixed points represents an extremum wrt vari
ations in path. The function S(q2t2' q Itt) might not exist 
for certain pairs of points or might be multivalued for 
others. The two-point characteristic function is a solu
tion of the Hamilton-Jacobi equation in two sets of 
variables: 

as I. as ) 
at; + H,q2' aq2' t2 =0 (2) 

and 

oS ( as \ 
-at:,+H Ql' - aQI' tl) =0 (3) 

The second equation follows from the first by virtue of 
the interchange condition 

implied by the integral structure of the characteristic 
function. Initial and final momenta are given by rela
tions of the form 

as as 
PI = - aQl' P2 = oQ2 • 

(4) 

(5) 

The two-point characteristic function finds utility in 
the construction of quantum-mechanical Green's func
tions and density matrices. 2 An example is the kernel 
K(Q2t2' qltl) which represents a solution of the time
dependent Schrodinger equation 

{illa~2 -H2}K(q2t2,qltl) =0 (6) 

subj ect to the initial condition 

K(q2tl' q l t1) = 6(q2 - Ql)' (7) 

This Green's function can be structured in the form 
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(8) K(Q2t2' qlt l) = F(q2 t2, ql t l) exp (tS(Q2t2' qltl)) 

exponentially dependent on the two-point characteristic 
function_ The exchange condition (4) is thus consistent 
with the Hermitian property 

(9) 

The pre exponential function F in (8) is determined such 
as to fulfil Eqs. (6) and (7). For the free particle and 
harmonic oscillator, this is relatively straightforward. 

The Coulomb Green's function K(r2t2, r1t1) has"not yet 
been worked out in closed form, 3 although the time
independent function G(r2, r l' E) is known. 4 We have at
tempted to construct the time-dependent function via 
the representation (8) and have thereby been led to 
evaluation of the corresponding characteristic function. 

2. KEPLER-COULOMB PROBLEM 

The Hamilton-Jacobi equation for the attractive 
Coulomb system reads 

~+....!....(VS)2_ze2=0. (10) 
of 2m Y 

This pertains as well to the Kepler problem under the 
substitution Ze 2 - GMm. We are, of course, in the non
relativistic domain and are assuming M» m [or else 
reading m in Eq. (10) as the reduced mass]. For com
pactness we shall employ atomic units, setting m = e = 1 
in Eq. (10). Equivalently, y is to be expressed in units 
of ao=t'i2/me2, t in units of t'i3/me4 = Olao/c, and Sin 
units of t'i. 

Accordingly, Eqs. (2) and (3) for the Kepler-Coulomb 
characteristic function take the form 

~+.!.(V S)2_ Z =0 
at

2 
2 2 Y2 ' 

(11) 

as 1 ( )2 Z - 0 
-~+2V1S -Yl- . 

The Hamiltonian is, of course, a constant of the motion, 
which implies 
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E __ ~_oS 
- ot2 - otl . (12) 

Thus S must depend on t2 and tl only through their dif
ference t = t2 - t 1, and 

oS 
E=-ai' 

The angular momentum is likewise a constant: 

L=r1xPl=r2xP2 

=-r1XV1S=r2xV2S. 

(13) 

(14) 

Every trajectory is thus confined to the plane normal 
to the angular momentum vector. One can write 

oS oS 
V 2S= u2 -~ - + u21-~-

ur2 vr12 

in terms of the nonorthogonal unit vectors 

u1=r/r1, u2 =r/r2, uI2=-u21=rI2/rI2' 

r 12 = r 1 - r 2, r 12 = I r 1 - r21· 

We find thereby 

_r1 xr2 oS_ rlr2~ L- ---u1 xU2 • 
r 12 or12 r12 or12 

(15) 

(16) 

(17) 

Thus far, S(r2t2, r 1t1) has been shown to depend on the 
four variables rl' r2, r 12' and t. A further reduction is 
made possible by the existence of an additional constant 
of the motion for the Kepler-Coulomb problem, namely 
the Runge- Lenz vector5, 6: 

(18) 

We have therefore 

A= Z- I LxV2S+U2 = - Z-ILXVIS+U1. (19) 

The scalar product with u1 + U2 results in 

Lx (V IS+ V2S) . (ul + u2) = O. (20) 

Using (15) and (17), we find thereby 

~-~=O. (21) 
orl or2 

This shows that S is independent of the variable r l - r 2; 

it can depend on r1 and r2 only through their sum r1 + r2' 
We have thus reduced S to a function of r 1 + r2' r12 and 
t. Cross-derivatives in the Hamilton-Jacobi equation 
are avoided if one uses as independent variables the 
linear combinations 

x=rl +r2 + r12' y=rl +r2 - r l2 (0,,; y";x < 00). (22) 

These are, in fact, the same variables which appear in 
Lambert's theorem [cf. discussion following Eq. (64)]. 
The Coulomb Green's function G(r I, r 2, E) was also 
found to depend on just x and y. Hostler7 showed that 
this is likewise a consequence of the "hidden symmetry" 
associated with the Runge- Lenz vector. 

3. SOLUTION OF THE HAMILTON-JACOBI 
EQUATION 

We turn next to the Hamilton-Jacobi equations (11) 
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for the characteristic function S(x,y, t). USing (15) and 
(22), we find, in terms of the variables x and y, 

( oS)2 (oS)2 [(OS) 
2 

(oS)2] HV1S)2= oX + oy +U1'UI2 oX - oy , 

( oS)2 (oS)2 [(oS)2 (oS)2] HV2S)= oX + oy +u2'U21 ox - oy • 

Noting that 

ul . u12 - U2 . u21 = (U1 + u2) . U12 = r 1 - r 2 ~ , 
r 1r 2 x- y 

the difference between Eqs. (11) reduces to 

( OS)2 _!..=(oS)2 _!... 
ox x oy Y 

(23) 

(24) 

(25) 

With the help of (25), the sum of Eqs. (11) works out 
to 

OS+(OS)2 +(oS)2 -!..-!..=O. 
ot ox oy x y 

(26) 

Equations (25) and (26) are equivalent to the symme
trical relations 

! oS +(oS)2 -!..=O .!as +(os)2 -!..=O (27) 
2 ot oX x '2 ot oy y 

which have precisely the form of the original Hamilton
Jacobi equations (11) for L = 0 and r1, r2 replaced by 
x/2, y/2. 

In accordance with Eq. (4), S must fulfil the time
reversal condition 

Sex, y, - t) = - sex, y, t) (28) 

which rules out solutions to (27) obtained simply by 
separation of variables. 

A further symmetry property makes possible a 
closed-form solution of these coupled equations. This 
is the invariance of (25)-(27) under the scale transfor
mation: x, y - b2X, b2y; t - b3t; S- bS. Thus 

S(b2X, b2y, b3t) = bS(X, y, t), (29) 

showing that S is a linear homogeneous function of the 
variables x1/2, y1/2, t1/3. The condition (28) is, in fact, 
a special case of (29), for b = - 1. By virtue of this 
homogeneity property, the characteristic function can 
be represented in the following form: f 13 X function of 
Xii 2/t11 3 and yI/2/tI/3 . 

Specifically, the following definition of variables is 
convenient: 

S= (32Z2t)I/a.f(u, v), 

u"'- (x3/16Zt2)1/6, v= (l/16Zt2)1/6 

for t? 0, 0,,; v"; u < 00. 

Equations (27) thereby transform to 

tCt - u/u - vi) + u-2(fu - 1) = 0, 

tCt - u/u - v/v) + v-2(f., - 1) = o. 

(30) 

(31) 

These equations are most readily solved by a double 
Legendre transformation, whereby 

F=u/u+v/v-/, U=/u, V=/v, 

S.M. Blinder 
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Fu=u, Fy=v. 

We find thereby 

_(~ lJ2 _1)1/2 
F u - 4 F ' 

_(3 y2 -1) 1/2 
F Y -"4-r 0 

The positive square roots are appropriate since 

(33) 

u, v >-c O. Some further inequalities are required in order 
to precisely characterize the solution. Equation (25) 
implies, since x >-c y, that 

(34) 

Since the angular momentum vector is directed parallel 
to u1 xu2, Eq. (17) implies that 

~=as_as>-cOo 
ar12 ax oy 

The last two inequalities show that oS/oy '" O. 
all cases, 

Iv '" O. 

For E>-c 0, as/at'" 0 and 

l-ulu-vfv"'O. 

Since l>-c 0, 

ulll + vfv>-C 0, ulu-vl/vl>-co. 

Thus 

lu>-CO forE>-CO. 

(35) 

Thus, in 

(36) 

(37) 

(38) 

(39) 

Inequality (38) further implies, in conjunction with (31), 
that 

I/ul >-clivi >-c 1. (40) 

Combining with (36) and (39), 

1 "'Iu < 00, - 00 <Iv'" - 1. (41) 

In terms of the transformed variables (32), 

F>-c 0, 1", U < co, - 00 < V'" - 1. (42) 

It is convenient therefore to define 

(43) 

(One might also define a second branch of the function 
with 0 >-c Il >-c X> - 00 corresponding to points r 1, r 2 re
flected wrt the axis of the Runge- Lenz vector. ) Integra
tion of Eq. (33), with the appropriate choice of constant, 
now gives 

3Ss F3 12 = sinhX coshX - X - sinhll coshll + Il 

= sinh(X - Il) cosh(X + Il) - (X - jJ.)o (44) 

Reversion to the original variables is effected by the 
inverse transformation: 

1= UFu+ VF y - F u, u=Fu, v==-F y• 

After some algebra we obtain 

I(u, v) =u](X) - v](Il) 

where 

and 

2002 

sinhX coshX + 3X 
4sinhX 
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(45) 

(46) 

(47) 

By virtue of (30) and (48), the characteristic function 
can be expressed in the form 

sex, y, t) = (4Zx)1/2](X) - (4Zy) 1 12] (jJ.). (49) 

Alternatively, 

SeX t)=(Z2t)1/3 sIDh(X-Il)cosh(X+Il)+3(X-po) . 
,po, 2 [sinh(X - Il) cosh(X + Il) - (X - po)]i73 

(50) 

In verification that the preceding represents the solu-
tion to Eqs. (25), (26), and (27), it is shown that 

loS Z. Z . 
- -==---smh2X= -- smh21l 2 ot x y 

(51) 

oS (Z)1/2 oS (Z)1/2 -==- - coshX -==- - - coshll. 
ox x 'oy y 

(52) 

Since os/at= - E, it follows that E> 0 (hyperbolic or
bits) is associated with real X and Il, E< 0 (elliptical 
orbits) with pure imaginary X and Il. The case E = 0 
(parabolic orbits) is obtained with X= Il ==- O. Equation 
(48) becomes indeterminate but (49) reduces to 

Sex, y) ==- (4 Zx) 1 1 2 - (4Zy) 1 1 2 • (53) 

This solution does not, however, fulfil the time-reversal 
condition (28). 

When 1l=0, then v=O, y==-O and either r 1 or r 2==-0. 
The characteristic' function reduces to S(r, 0, t). As 
X - Il * 0, S - O. 

The asymptotic region u, v - 00 pertainS to any of the 
limits Z - 0, x, y - 00, or t - O. The asymptotic form of 
the characteristic function is obtained in the limit X, Il 
- 00, whereby 

s- (~2t) 1/\ e2}. ~ e2"y/3, 

which represents the free-particle characteristic 
function. 

4. ELLIPTICAL ORBITS 

(54) 

(55) 

Negative-energy solutions are most directly obtained 
by continuation of the variables X and Il on the imaginary 
axis. Defining 

X", ia/2, Il '" if3/2 

(the factors 1/2 for 21T-periodicity), we obtain 

Sex, y, t) ==- (4Zx)1 /2F(a) - (4Zy)1/2F(f3), 

(56) 

(57) 

3a + sina 
F(a) '" ](ia/2) ==- 8 sin(a/2) (58) 

sm3(a/2) sin3(f3/2) (a - f3) . (a - f3) (a + f3) 
u3 v3 -2- - sm -2- cos -2- . 

(59) 
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Also, in analogy with (50), 

Sea, i3, t) 

( 
z2tl2 \ 1/3 

= [(a - {:3)/2] - sin[(a - {:3)/2] cos[(a + (3)/2]} 

x [3 (a; (3) + sin (a; (3) cos (a; (3) J. (60) 

The characteristic function representing an eliptical 
orbit should exhibit a periodic structure of the form 

Sea + na o, (:3 + n{:3o, t + nT) = sea, (:3, t) +nS(ao, i30, T), 

n=0,1,2,"', 

where T is the period of the orbit. For Eqs. (60) and 
(61) to be consistent, two conditions must be met: 

3 [(a; f:3) + n(a02- (30)] + sin [(a ; (3) +n(¥)] 

xcos[( a; (3)+n(a o; (30)] 

=3(a;i3) + sin (a;i3) cos(a;i3) 

+ n [3 (a 0 ; (:30) + sin (a 0 ; (30) cos (a 0 ; (30)] 

and 

[(a - 13)/2] - sin[(a - (3)/2) cos(a + {:3)/2] 

(61) 

(62) 

_ T (63) 
- (ao - (3 0)/2)- sin[(ao - 130)12) cos«ao - 130)/2] . 

The first is most easily fulfilled with ao - 13 0 = 27T, 
ao + f:3 0 = O. The second gives thereby a relation for the 
orbital time 

T[(a - 13) (a -13) (a + 13)] t=1i -2- - sin -2- cos -2-

T 
= 27T [(a - sin a) - (i3 - sin(3)]. (64) 

This is, in fact, a classical result known as Lambert's 
theorem. 9 In the original form of the theorem, a and 13 
are defined by 

. a_(x)1/2 . f:3_(y\1/2 
SlUZ = 4a ,Sl~ = 4aJ ' (65) 

a being the semimajor axis of the ellipse. By virtue of 
(51), (13), (56), and the relation E=-ZI2a, our defini
tions of a and f:3 are shown to coincide with (65). 

Very similar in form to (64) is Kepler's equation 

_T[(®2-®I) . (®2-®1) (®2+®1)] -- --- -esm --- cos ---
7T 2 2 2 

(66) 

in which e is the eccentricity and ®t. ®2 the eccentric 
anomalies at rl and r 2, respectively. Comparing (66) 
with (64) we can identify 

(
a + 13) (®2 + ®1 ) a-{:3=®2- ®1, cos -2- =ecos --2- . (67) 

Setting a - (:3 = 2n7T, t = nT in Eq. (60), we obtain the 
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characteristic function for n complete cycles 

S = -hz(27TZ)2 13T 1 13. (68) 

This is related to W, the corresponding solution of the 
time-independent Hamilton-Jacobi equation, bylO 

S=W-Et. (69) 

Since for elliptical orbits 

T= 27TZ(- 2E)-3/2, (70) 

we find 

W = nJ, J = (27Tz)2 /31'1/3, (71) 

in agreement with the value of the canonical action 

J= § (Prdr+Pede +P'b d</». (72) 

This is equivalent to the more familiar result that 

E=- 2rZ2/J2 (=_ 27TmZ2e4/J2) (73) 

which for J = nh (n = 1, 2, 3, ... ) gives the Bohr energy 
levels. 

5. REPULSIVE COULOMB POTENTIAL 

For a repulsive Coulomb potential, an analogous cal
culation leads to the characteristic function 

Sex, y, t) = (4ZX)1 12g (A) _ (4Zy)1 12g (11), 

f. (A) sinhA coshA - 3A 
'.:J 4 coshA ' 

cosh3 A cosh31l 
---:-:r-=---:-:r-= sinh(A- 11) cosh(A + 11) + (A- 11) u v 

lSee, for example, J. L. Singe, "Classical Dynamics," in 
Handbuch der Physik Vol. Ill/I, edited by S. Fliigge 
(Springer, Berlin, 1960), p. 117ff. 

2R. P. Feynman, Rev. Mod. Phys. 20, 367 (].948); R. P. 

(74) 

(75) 

(76) 

Feynman and A.R. Hibbs, Quantum Mechanics and Path In
tegrals (McGraw-Hill, New York, 1965); S.M. Blinder, 
Foundations of Quantum Dynamics (AcademiC, London, 1974), 
Chap. 6; S. M. Blinder, "Configuration-Space Green's Func
tions," in International Review of SCience, Vol. I, Theoreti
cal Chemistry (Butterworths, London, 1975). 

3For the present status of the problem, see M.J. Goovaerts 
and J. T. Devreese, J. Math. Phys. 13, 1070 (1972); R.G. 
Storer, J. Math. Phys. 9, 964 (1968). 

4L. Hostler, J. Math. Phys. 5, 591 (].964). The two Green's 
functions are related by Fourier transformation as follows: 

K(r2, rl, t) = lim._ 0 21T f:'[G(r2, rit E + iE) 

-G(r2,rt , E_iE)le-iEtlhdE. 

5C. Runge, Vector Analysis (Dutton, New York, 1919), p. 79; 
W. Lenz, Z. Phys. 24, 197 (].924); W. Pauli, Z. Phys. 36, 
336 (].926) [English translation in B. L. van der Waerden, 
Sources of Quantum Mechanics (Dover, New York, 1968), 
p. 3871. See also articles by H. V. McIntosh (p. 75) and C.E. 
Wulfman (p. 145) in Group Theory and its Applications, 
Vol. II, edited by E.M. Loebl (Academic, New York, 1971). 

6The properties of the Runge-Lenz vector can be developed as 
follows. Start with Newton's second law for a particle in a 
Colulomb field: 
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~ Ze2 

dt =--;:r r. 

Then 

This works out to 

d 
dt (Lxp+Ze 2mu) =0, 

showing that A is a constant of the motion. The equation of 
the orbit is obtained from 

A 'r=Arcos8=- (Ze2m)-1L2 +r, 

r= (Ze 2m)-1L2/(1-Acos8), 

2004 J. Math. Phys., Vol. 16, No. 10, October 1975 

which represents a conic section. The vector A is directed 
towards the aphelion of the orbit; its magnitude equals the 
eccentricity. 

7L. Hostler, J. Math. Phys. 8, 642 (1967). 
8This also applies w. r. t. the original position variables: 

S(t; 2 rto t;2r2,t; 3t) =tS(r,r2' t). 

Newton's second law for a Coulomb force is likewise invari
ant under the substitution r- t 2r, t- t 3t. This implies 
Kepler's third law of planetary motion, that the period of an 
orbit is proportional to the three-halves power of its linear 
dimension. 

9See , for example, E. T. Whittaker, A Treatise on the Analyt
ical Dynamics of Particles and Rigid Bodies (Cambridge, 
U. P., Cambridge, 1965), 4th Ed., p. 91-92. 

1°See , for example, H. Goldstein, Classical Mechanics 
(Addison-Wesley, Cambridge, Mass., 1950), p. 299ff. 
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Two types of Hamiltonians are investigated which describe quantum mechanically a particle moving subject 
to a linear viscous force under the influence of a conservative force: the conventional explicitly time
dependent one and an alternative class of nonlinear Hamiltonians. In the latter group we propose a new 
form. By Ehrenfest's theorem the expectation values of the operators of physical observables correspond to 
the classical quantities. For all Schrooinger equations we derive and discuss wavepacket, wave, stationary, 
and pseudostationary solutions of force free motion, free fall, and harmonic oscillator. 

1. INTRODUCTION 

A. Purpose 

Recent heavy ion scattering experiments 1 give strong 
indication for a new type of reaction called deep in
elastic process. The heavy ions lose their entire avail
able kinetic energy during the collision and are then 
repelled just by their mutual Coulomb interaction energy. 
Thus nuclear friction seems to play an important role. 2 

Moreover, there is also evidence that the fission pro
cess is damped during the descent from saddle to 
scission. 3 Classical 4-6 as well as microscopic 7-9 calcu
lations in these phenomena which include frictional ef
fects have already been made. Quantal friction, how
ever, is still an open problem. Other applications are, 
for instance, the motion of Stokes' ball in a viscous 
medium, Brownian motion, or an electric oscillator 
composed of inductance, capacitor, and resistor. 

All examples given above, in principle, can be de
scribed by proper many-body Hamiltonians. Their 
solutions, however, can only be achieved for very 
simplified systems, e. g., in the model of Ford, Kac, 
and Mazur, 10 where a particle which is tied to a heat 
bath consisting of a chain of coupled harmonic oscil
lators is considered and which then exhibits Brownian 
motion. Other microscopic models treating radiation 
damping ll

•
12 or models of electric circuits or Brownian 

motion which are based on the interaction of two sys
tems 13-15 shall only be mentioned here. Proceeding this 
way not only complicates matters but also yields re
dundant information because the main interest usually 
is focused only on one particle or, in other wordS, on 
a few degrees of freedom. In nuclear physics this fact 
led to the early introduction of collective variables. 16 

These v:~riables, say X, obey the classical equation of 
motion mX + av lax = 0, where V(X) is the potential of a 
conservative force. Then they are formally quantized 
by replacing X-x and mx-p=-ina/ax, where x,p are 
now the quantum mechanical variables. The collective 
system is thus described by a Hamiltonian operator 
H(x,p) and a wavefunction </!(x,t), which obeys the 
Schrodinger equation ino</!/at=H</!. 

It is the purpose of this paper to achieve formal 
quantizations of a collective "particle" in the above 
given sense which, in addition to the conservative force 
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- a v /.ax. is also subject to a linear frictional force 
- ymX. This means physically that some part of the 
interaction with its surrounding medium or its internal 
structure is taken into account. No attempt, however, 
shall be made to calculate the friction coefficient y 

microscopically or to apply the formalism to heavy ion 
scattering or fission. 

B. Survey 

The formal quantizations can be achieved in two dif
ferent ways. (i) The historically older method consists 
in using an explicitly time-dependent Hamiltonian and a 
canonical momentum which is not associated with the 
usual momentum. By this circumstance it implies a 
lack of perspicuity. (ii) The second method introduces 
a friction potential which contains quantum mechanical 
expectation values and therefore makes the Schrodinger 
equation nonlinear. It, hence, has the disadvantage that 
wavepackets cannot be constructed by superposing waves 
in the usual fashion. 

All Schrodinger equations thus generated are solved 
for the cases of damped force free motion and free fall 
and undercritically damped harmonically oscillating 
motion. In addition to the wavepacket solutions whose 
centers of gravity travel along the respective classical 
paths, they also have wave and stationary or pseudo
stationary solutions. 

2. CLASSICAL EQUATION OF MOTION AND 
CORRESPONDENCE PRINCIPLE 

A. Classical equation of motion 

The equation of motion of a classical particle moving 
in one dimension X with momentum P = mX through a 
linearly viscous medium under the influence of a 
conservative force - a v /ax reads 

. av 
P+yP+ ax =0. 

Then the energy of the particle, i. e., the sum of 
kinetic P- /2m and potential V energies, 

E=T+V, 

is not a constant of motion but decays according to 

(2.1) 

(2.2) 

E=-(y/m)P-. (2.3) 

Copyright © 1975 American Institute of Physics 2005 



                                                                                                                                    

This energy is dissipated from the particular degree of 
freedom X, into its surrounding medium or into its 
internal structure. 

B. Correspondence 

Quantum mechanically the dissipative system is to be 
described by a Hamiltonian operator H, which, in its 
most general form, may depend on the coordinate, the 
momentum, time, and wavefunction, and a wavefunction 
1/J(x, t) which is a solution of the time-dependent 
Schrodinger equation 

... a 
tn iit1/J=H1/J. (2.4} 

In order to choose a physical description which 
reproduces the classical results in the limit of large 
quantum numbers, quantum mechanical correspondence 
to the classical equations (2. 1)-(2.3) has to be es
tablished. Let p denote the operator which represents 
the classical momentum P and let the expectation value 
(A) of an operator A be f1/!*A1/Jdx; then for wavepackets 
which travel along the classical path, 

(x) =X, (P) =P, (2.5) 

we demand Ehrenfest's theorem 

(:tp)+y(P)+G:) =0. (2.6) 

The total time derivative of an operator herein is given 
by 

d aA i 
dt A = at + Ii [H,A]. (2.7) 

Equation (2. 6) is not rigorously equivalent to Eq. (2.1) 
even for undamped systems because (a v lax) = a v lax is 
only true for the potentials to be discussed below. 17 In 
what follows we therefore either have to restrict our
selves to these potentials or take Eq. (2.6) as approxi
mately valid. 

Equations (2.2) and (2.3) have no unique quantum 
mechanical analog since, e. g., (P~, (P)2, (P) (P~1/2, 
etc. would all correspond to p2. Therefore, we can only 
demand the approximate equalities 

(E) '" <:;) +(V(x», 

(.!i.E\ '" _ L(p~, 
dt 'j m 

(2.8) 

(2.9) 

where we allow for additions of the order of the uncer-
tainty of the respective quantity, e. g. , 

Li.; = (P2) _ (pj2 . (2.10) 

Since the energy is not a constant of motion, the de
finition of the energy operator is still open. 

In addition to these Ehrenfest theorems the Heisenberg 
uncertainty principle 

(2.11) 

is always fulfilled. Here p is the canonical momentum 
operator which is not necessarily equal to p, and Li.-p, Li.x 

are given analogously to Eq. (2. 10). 

As a last point, a solution 1/J of Eq. (2.4) should obey 
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a continuity equation which, in its most general form, 
must be written as 

p = 1/J*IP, j = Re (1/J* ~; 1/J). (2. 12) 

The generalization of the current is necessary because, 
according to Hamilton's equation x = aHlap, the operator 
corresponding to the velocity is not always given by plm. 

C. Classical solutions 

In the following two sections we are studying two 
classes of Hamiltonians which fulfill the requirements 
(2.6), (2. 8), (2. 9), (2. 11), (2.12) and achieve their 
solutions for the problems of force free motion, free 
fall, and harmonically oscillatory motion. Therefore, 
we list here the classical solutions of these problems: 

Force free motion: X =Xo + (polmy)(l- exp(-yt», 

P=Poexp(-yt). 
(2.13) 

Free fall: 

V=-mgX 

X =Xo + (l/y)[gt+ (Polm -g/y) 

x (1 - exp( - yt))}, 

P =Po exp(- yt) + (mg!y)(1 - exp( - yt)). 

(2.14) 

Harmonic oscillator: 

X = exp( - yt 12.) 

x (Xo cosnt + Polm ~YXo/2 Sinnt), 

P=exp(-ytI2) 

(2.15) 

Here Xo and Po are the initial values of position and 
momentum and n=(w2 _y2/4)1/2 is the frequency re
duced by the damping. Since we only deal with under
critically damped oscillators, y < 2w, the reduced 
frequency is reaL 

3. EXPLICITLY TIME-DEPENDENT HAMILTONIAN 

A. Derivation 

There is no direct access to the equation of motion 
(2.1) via a classical Hamiltonian function H = T + W with 
the momentum dependent potential W(X, P) because the 
frictional force F= - ymX cannot be derived from 18 F 
= _ aw lax + (dldt)(aw lax). However, the expliCitly 
time-dependent Lagrangian (cf., e. g., Ref. 19) 

L =exp(yt) [imXZ - V(X)] (3.1) 

leads to a canonical conjugate momentum 

P = mX exp(yt) = P exp(yt) 

and to the Hamiltonian function 

H = (Fz 12m) exp(- yt) + V exp(yt) , 
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which gives the correct equation of motion (2.1). 
Furthermore, the definition of energy 

E=Hexp(-yt) 

is in accordance with Eqs. (2. 2) and (2. 3). 

(3.4) 

By applying the conventional rule of quantization of a 
classical Hamiltonian the canonical conjugate momentum 
P is replaced by -ilia/ax, thus arriving at the quantum 
Hamiltonian 

li
2 

02 

H = - 2m exp( - yt) ax2 + V(x) exp(yt) (3. 5) 

and the energy operator E =H exp(- yt). Equation (3.5) 
was invented by Kanai,20 then investigated by several 
authors, 21-28,37 and has recently been obtained indepen
dently. 27,28 

B. Proofs of Ehrenfest theorems 

Since P = P exp(yt) - P = - ina lax one finds p = - iii 
x exp( - yt)a lax for the operator associated with the 
classical momentum P. By using the relations ap/at 
=-yp and [H,p]=[V,p]=iliaV/ax one readily verifies 
Eq. (2. 6). The expectation value of the energy operator 
then simply reads (p2 /2m + V) and, thus, Eq. (2. 8) holds 
with an equality sign. E commutes with H and therefore 
(d/dt)E = aE/at = - yp2 /m, so that (2.9) is fulfilled 
exactly as well. [Bopp27 tried to define the energy 
operator as the Hamiltonian itself and then drew the 
conclusion that because of «d/dt)H) = -y exp(yt)(p2 /2m 
- V), Eq. (2.9) is violated. ] The continuity equation 
(2.12) is proved Similarly by inserting aH/af) 
= p exp( - yt)/m. 

C. Wavepacket solutions 

Solutions of the time dependent SchrOdinger equation 
shall be classified as either wavepackets which obey 
(2.5) or waves, pseudo stationary , or stationary solu
tions, where (x) and/or (P) either do not exist or are 
unequal to the classical X, P, respectively. 

Historically, Stephens23 and Kerner4 were the first 
to give solutions of Kanai's Hamiltonian (3.5), namely 
the pseudo stationary states of the harmonic oscillator. 
Other solutions were achieved by Myers25 (force free 
motion and free fall waves), R6th37 (harmonic oscillator 
wavepacket), Messer28 (force free motion wavepacket), 
and by Buch and Denman26 (force free motion and free 
fall wavepackets). 

It turns out that the wavepacket solutions of all three 
cases, Eqs. (2. 13)- (2. 15), can be cast into the same 
form 

(~+a*) 1/4 (X X)2 i 1\ 
1/J=\21Ta2 exp - ;a +i [P(x-X) + fLdt-e]; 

(3.6) 
where r; and P are the classical Lagrangian (3. 1) and 
canonical momentum (3. 2) and a(t) is a complex and 
e(t) a real function of time different for each case. Its 
probability density reads 

* 1 ( (x _X)2 ) I/J I/J= 1T1/2w exp - w 2 , 
w2 = 2aa*. 

a+ a* (3.7) 

One easily verifies that (3.6) is a wavepacket in the 
sense that (x)=X and (p)=P which obeys the uncertainty 
equation 
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(3.8) 

However, since 1:., = I:.J exp( - yt), the uncertainty product 
of position and physical momentum becomes smaller 
than 1i/2. This unphysical result has already been noted 
by Brittin21 and Havas22 and is explained by Senitzky15 as 
due to neglection of a proper fluctuation term induced 
by the dissipation. 

The Fourier transform in the space of the canonical 
momentum and the canonical momentum probability 
denSity read 

cp{P)= (a
2
: a*) 1/4 exp (- 2:2 Cp_p)2 - ~ [PX - f L dt+ e]), 

(3.9) 

(
a + a*)1/2 (Re(a) - ,\ 

cp* cp = 2iT exp - --r- (f) - P)2; . (3.10) 

After insertion of the ansatz (3.6) into the Schrodinger 
equation, one obtains differential equations for a and e 
which can be solved: 
Force free motion a(t) = (iIi/m) exp( - yt) (3.11a) 
and free fall: 

a(t) = ao + (ilf/mY)(1 - exp( - yt» 

(3.11b) 

(3.11c) 

Harmonic oscillator: a-1(t) = (m/1i) (n + iiy) exp(yt) 

w-2(t) = (m/1i}n exp(yt), e = ilint. 

(3.12) 

By expanding the exponential in Eq. (3.11), a(t) 
'" ao + (i1it/m)(1- yt/2), one observes that the widths of 
the free (force free motion and free fall) wavepackets 
initially behave like the widths of frictionless wave
packets. For larger times, however, the widths become 
constant in contrast to the undamped case, cf. the ap
propriate curves in the figure. The widths of the 
canonical momentum distributions stay constant for all 
times. 

On the other hand, the width of the harmonic oscillator 
wavepacket tends to zero, thus contracting to a delta 
function while its canonical momentum distribution be
comes flat. According to the momentum uncertainty 
1:.!=lf2exp(-2yt)/(a+a*), however, the momentum dis
tribution contracts to a delta function as well. 

D. Wave and pseudostationary solutions 

In addition to the wavepackets there also exist other 
solutions of this Schrodinger equation which do not yield 
classical results for the expectation values of x and/or p. 

For free motion, the wave is easily obtained by 
observing th~t the differential equation (3. l1a) originally 
came from (a - iliexp( - yt)/m)/a2 = 0, thus allowing for 
1/a=0. After inserting this result into (3.6) and re
arranging the phase, one obtains 

I/Jp = exp{(i/1i} [Px- (1/2m) f p2 exp(yt) dt]}. (3.13) 

This plane wave is an eigenfunction of the momentum 
operator with eigenvalue P, and of the kinetic energy 
operator. Since (x) is entirely undetermined, it is only 
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an eigenfunction of the energy operator for force free 
motion but not for free fall. Equation (3. 13) can be 
written as exp[(i/I!)(Px - fTdt)], where T = p2 exp(yt)/2m 
is the canonical kinetic energy. Therefore, T = p2/2m 
can be interpreted as the expectation value of the kinetic 
energy of this plane wave. 

The pseudo stationary state solution of the harmonic 
oscillator is derived similarly, 

<Pn=Nn exp{[ ty - W(n + t)]t - (m/21!)(il + til') exp(yt)x2} 

XHn([(mil/l!)exp(yt)]1/2x), (3.14) 

where N =(mil/7T1!)1/4(2n n!)-1/2 and H is the Hermite 
" n polynomial. The expectation values of x and p both 

vanish and the wave function (3.14) is neither an eigen
function of H or E nor is it stationary since ?/J:?/J

n 
depends 

on time, 

I/J:I/J" =N! exp[ -Wt - (mil/I!) exp(yt)x2] 

x H~{[(mil/I!) exp(yt»)1/2x ). (3.15) 

For a given quantum number n, however, the expecta
tion value of the Hamiltonian 

(H)n=(n+t}lrw2/il (3.16) 

stays constant in time but the expectation value of the 
energy (E>" = (H> n exp( - yt) does not. 

4. NONLINEAR POTENTIALS 

A. Requirements 

Another class of dissipative Hamiltonians can be 
found by circumventing the classical Hamilton's equa
tions. Here one assumes the quantization rule P - P 
= - ina /ox and searches for a Hermitian potential 
operator yW(x, a/ax; I/J) in the Hamiltonian 

If a2 

H=-2maX2+V+YW, (4.1) 

which gives the expectation value (2.6) of the equation 
of motion. In addition, since the Hamiltonian (4.1) is 
not explicitly time dependent, in order to fulfill Eq. 
(2.8), one identifies the energy operator with the 
Hamiltonian itself. Then one is led to 

(W> "'0, 

(! E) =Y <~~) , 
and,. by calculating the expectation value of (d/dt)p 
= (i/If)[H,p], we obtain 

(! p) + \~:) +Y(~:) =0. 

Equation (4.4) together with (2.6) give the defining 
equation for the additional potential W 

oW ax =(P), 

or, explicitly, 

f ?/J* ~~ ?/Jdx=-¥If f ( 
0* 0** ) ?/J*---?/J dxo 
ax ax 

B. Kostin's Hamiltonian 

One solution of (4.5) due to Kostin29 has the form 
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(4,2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

aw K = _ .! in (a?/J/ax _ ap* lax) = _ .! in ~ In.!L 
ax 2 If; 1/1* 2 ax 1[1* ' 

(4.7) 

which in turn when integrated yields 

(4.8) 

where the free function of time was chosen according to 

(4.9) 

The continuity equation can be easily proved by noting 
that the current is just the ordinary current j = Re(?/J*N)/ 
m and P = - (i/I!)(?/J*H?/J - </iH?/J*). The energy dissipation 
takes the form 

(:t H) =- ~ (e::KJ) 
=-ym((~))"'-: (p2j. 

(4. 10) 

The approximate equality in Eq. (4.10) can either be 
deduced from (4.5) or from the fluid mechanical inter
pretation 30,31 of quantum mechanics where the current 
equals the denSity times the velocity and, hence, mj/p 
is the momentum. As shown by Kan and Griffin, 32 the 
fluid mechanical interpretation can even serve for 
deriving Eq. (4.8). One writes ?/J= q; exp(iS/I!), where <p 

and S are real functions of position and time and S is 
the classical action with V'S equal to the momentum. On 
the other hand, the phase S of any wavefunction ?/J is 
given by - tilf In(?/J/?/J*). Thus, by taking the gradient, 
one arrives at Eq. (4.7) and proves that (aw Klax) is 
equal to the classical momentum. 

Solutions of Kostin's nonlinear Hamiltonian are 
derived in subsections 4D and 4E together with solutions 
of the following Hamiltonians. 

C. Sussmann's Hamiltonian and modifications 

Other solutions of Eq. (4.5) for a Hermitian W involve 
linear combinations of the following operators (x)P, 
(P)x, t(px+xp), (x)(P) , t(Px+xP), etc. Theonlyre
maining combination however, which Simultaneously 
fulfills Eqs. (4.2) and (2.9) is the general potential 33 

W G = e{(xp + px)/2 - (x)p} + (1 - e)(p)(x - (x») 

= (x - (x) }[ep + (1 - e)(p) J- tine, (4.11) 

where e may be a real constant or a real function of 
time. With aH lap = p/m + ye(x - (x», the equation of 
continuity can be proved, and, by differentiating (4. 11) 
with respect to time, one finds 

(:t H) =- ~ (P)2, (4.12) 

and, by taking the expectation value of Eq. (4.11), one 
obtains 

(WG) = e[(xp + px)/2 -(x)(P)] ::::0. (4.13) 

The special case of (4, 11) with e= 1 was found by 
Slissmann34 empirically in studying force free motion of 
wavepackets travelling along classical damped paths. 
This guess has been inserted into the expression ina la t 
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+ (li 2 /2m )U2 /UX2 - V(x) and the remnants were found to 
be Wsl/! with 

Ws =Mx~(x),pL (4.14) 

where [A, B1. is the antic om mutator AB + BA. As will be 
shown below, however, the oscillating wavepacket solu
tions of this Hamiltonian exhibit a peculiar behavior. In 
order to remove this peculiarity we modified Siissmann's 
potential and found the two expressions 

WHl=-Hx-(x), p+(P)t, 

W/I2=(P)(x-(x»- t[x-(x), p-(p)l, 

(4.15) 

(4.16) 

which are the special cases c = 1-[( 4. 15)] and c = -1-
[(4.16)] of the general potential (4.11), respectively. 
Equation (4.16) yet gives unphysical results for the free 
wavepackets (see next subsection) and therefore has to 
be abandoned. 

Force free motion 
and free fall 

Harmonic oscillator: 

Kostin 
a+ ya(a~_ iii =0 

2a* m 
8 - _1.. iii2 f (tr + a*2)(a - a*) dt 

- 8 Y aa*(a + a*) 

8= !iiwt 

Unfortunately, the differential equation (4. 19a) for the 
width a(t) of the force free motion and free fall wave
packet solutions of Kostin's Hamiltonian cannot be solved 
in closed form. However, the width w(t) as defined in 
(3.7) obeys the second order differential equation 

tV + yw - (ii 2 /m 2
)w-3 = 0, (4.24) 

which, by chance, is just the equation of motion of a 
classical particle moving under linear friction outside 
the potential if2 /2m 2w 2

• 

For an undamped free wavepacket one usually employs 
the initial conditions of a minimum wavepacket, 35 cf. 
Eq. '(3.8), for t=O, 

Finally, by putting c = 0 Albrecht33 obtained 

WA =(p)(x-(x», (4. 17) 

which gives results very similar to Kostin's Hamiltonian. 

D. Wavepacket solutions 

Kostin's Hamiltonian (4.8) and the general Hamiltonian 
(4:11) have the same type of solutions as Kanai's. Since 
the canonical m~mentum coincides with the ordinary 
momentum, the wavepackets read 

1/!=~2:;*) 1/4 exp (- (X
2
-
a
X)2 +i [P(x-X)+ J Ldt-8]). 

(4.18) 

They obey the uncertainty equation (3.8) with p replaced 
by the momentum variable p and have the corresponding 
Fourier transforms (3.9), (3.10). For a(t) and 8(t) we 
find 

General 
. iii 
a- 2cya- - =0 

m 

w-2 _ m (w2 _ C2y2)1 /2 
-Ii 

8 = !ii(w2 - c2y)1/2t. 

a(O) == a*(O) = ao' 

w(O)=Wo , 

(4. 19a,b) 

(4. 20a, b) 

(4. 21a, b) 

(4. 22a,b) 

(4. 23a, b) 

(4. 25a) 

(4. 25b) 

where (4. 25b) follows from (4. 25a) but not vice versa. 
Both sets of initial conditions are also compatible with 
Kanai's free wavepacket (3. 11b, c) and, as can be easily 
seen, with Kostin's, Eqs. (4. 19a), (4.24). 

The curve labelled "Kostin" in the figure was calcu
lated by solving Eq. (4.24) numerically with these initial 
conditions, and its limiting values for small and large 
times can be obtained in closed form, 

) 

ao + (iii/m)t(1 - ~t) 
a(t)-

41ft/[m(2vYt - i)] fort-I:· (4.26) 

For small times Kostin's wavepacket therefore travels 
like Kanai's. For large times, however, it becomes 
broader until the probability distribution is entirely flat, 
cf. the figure. Simultaneously the width of the momentum 
distribution becomes narrower and finally it goes over 
into a delta function in such a way that the uncertainty 
product becomes t::.,t::.x = 1-ii. Hence it again becomes a 
minimum wavepacket contrarily to the frictionless wave-
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packet whose. uncertainty product goes to infinity since 
the width of its momentum distribution stays finite. 

The harmonic oscillator wavepacket solution of 
Kostin's Hamiltonian was first given by Kan and Grif
fin. 32 The widths of the probability and momentum dis
tributions stay constant for all times with an uncer
tainty of exactly 1-n. We mention, however, that the 
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246810 
-t/to 

FIG. 1. The widths of 
damped or undamped 
fy = 0) force free motion 
and free fall wavepackets 
calculated with different 
Hamiltonians. Unit of 
length =w(O), unit of time 
=to=mw2(0)/21i, and ,),=1/ 
4to or 0, initial "velocity" 
w(O) = o. 

quantum mechanical frequency in (4. 23a) is the original 
frequency, w, whereas the classical frequency reduced 
by damping is 0=(W2 _y2/4)1/2. After having lost all 
available energy, the oscillator ends up in its ground 
state with energy tliw. 

The differential equation (4. 19b) for the width of the 
free wavepackets in the general potential can be solved. 
In this case, however, the two sets of initial conditions 
exclude each other. By using (4. 25a) one gets 

w2 =ao exp(2cyt) + (If /m2c2y2ao) sinh2cyt, 

a = ao exp(2cyt) + (ili/2mcy) (exp(2cyt) - 1), (4.27) 

and with Eq. (4. 25b) 

2 h2 1i
2 

2 
W = ao cos cyt + 2 2 2 sinh cyt, 

m c y ao 

ao ) iii 
a= 1 2 2 • .2...2/bl exp(2cyl +-2--+mCruo ft mcy 

(4.28) 

with the difference that (4.27) initially travels like a 
minimum wavepacket and (4. 28) initially travels like a 
frictionless wavepacket with an initial uncertainty 
product of tli [1 + O(y)]. 

For all values of c the width tends towards infinity as 
does the solution of Kostin's Hamiltonian. The case 
c = 0 gives exactly the width of an undamped wavepacket 
and although aCt) is different for c = + t and c = - t, Eq. 
(4.28) is independent of the sign of c. In the figure the 
solution (4.28) is plotted. 

The widths of the momentum distributions, however, 
differ. For c = t it tends to zero, for c = 0 to a constant 
and for c = - t to infinity. An infinite momentum un
certainty, however, means that the expectation value 
of the kinetic energy becomes infinite according to 
(p~ - (P)2 = t:.! = If /(a + a*) and T = (p~ /2m. Since this is 
an unphysical result, the potential W H2 has to be ex
cluded (in free motion there is no energy associated 
with (X2) , and therefore the probability distribution in 
coordinate space may become infinitely broad). 

Siissmann's potential Ws with c = 1 gives the fastest 
increasing width but otherwise similar results as with 
c = t. The quantum frequency li/mw2 of the harmonic os
cillator solution of the general potential is (w2 _ c2y2)1/2, 
cf. Eq. (4.21); there is no other difference to the 
solution of Kostin's Hamiltonian. Albrecht's potential 
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with c = 0 even yields the same frequency. The pecu
liarity mentioned below occurring if one used SUssmann's 
potential is the frequency (w2 

- y2)1/2 which is neither 
the unshifted frequency w nor the reduced 0 = (w2 _ y2/ 
4)1/2. Thus, e. g., if y = w, the classical oscillator un
dergoes damped oscillations whereas the quantum 
mechanical wavepacket does not oscillate any more but 
has a flat probability distribution. The form (4.14) ac
cordingly has to be given up on phYSical grounds. 

In the case c = t one obtains the reduced frequency 0 
as quantum frequency which seems to be more realistic 
than w, which one obtains with the potentials W K and W

A
• 

E. Wave and stationary solutions 

In his original paper 29 Kostin derived the force free 
motion wave solution of his Hamiltonian, noting the fact 
that the expression (In(I/I/I/I*» is undetermined because 
(x) is uncertain. This solution and the corresponding 
free fall wave and also the free waves in the general 
potential are very similar to Kanai's, 

I/I p = exp[(i/Ii)(Px - J (p2 /2m - yP(x» dt) - icy!], (4.29) 

where c = 0 for W K and W A' They are eigenfunctions of 
the momentum and kinetic energy operators, but the 
total energy is undetermined on grounds of the ap
pearance of (x) in the time dependent phase. Further
more, it is stationary for c = 0 but decays if c> O. It 
would increase exponentially in time if c < 0, which 
again is unphysical. 

The solutions of the harmonic oscillator are 

I/In =Nn exp[ - iwc(n + t)t - (m/21i)(wc + icy)x2]H (Vmwc/1i x), 
n 

Kostin, Albrecht: c=O, wc= w 

General: 

Hasse: w =0 
c ' 

(4.30) 

(4. 31a) 

(4. 31b) 

(4. 3Ic) 

where N
n 
= (mwJ7T1i)1/4 (2nn!)-1/2 and 1/1*1/1 does not depend 

on time. The solutions (4.30) are therefore stationary. 
Kostin's potential W K here vanishes identically since 
1/1/1/1* does not depend on the coordinate x and Albrecht's 
potential WA vanishes as well since (P) = O. Thus (4.30) 
together with (4. 31a) are eigenfunctions of the Hamil
tonian T + V and, therefore, also eigenfunctions of the 
energy operator with eigenvalues En = (n + i)1iw. Con
trarily, for c=i, (4.30) with (4.3Ic) are only eigen
functions of H with eigenvalues (n + i)1lO. 

5. CONCLUSION AND OUTLOOK 

Kanai's Hamiltonian and the nonlinear potentials W K' 

WA , W Hl all have the common feature that they repro
duce the results of undamped quantum mechanical sys
tems for fixed time and the limit y - O. For y * 0 the 
expectation values of observables of damped systems 
correspond to classical quantities. Other features such 
as the widths of the free (force free motion and free 
fall) wavepackets, frequency of quantum oscillation, 
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and action uncertainties, however, differ widely. The 
formal quantization of dissipative systems under such 
weak conditions is therefore not unique. Furthermore, 
there are no experimental tests for the widths, quantum 
frequency, or action which could serve as decisive 
factors for one or the other form of quantization. 

The most complete analogy to the undamped case is 
supplied by Albrecht's potential, where one merely has 
to insert the classical position and momentum of the 
damped motion into the wavefunctions of the undamped 
Hamiltonian. This, however, is only true for the three 
types of one-dimensional motions studies below. Except 
for Kostin's Hamiltonian, generalization to more space 
coordinates is straightforward and further investiga
tions into one or more dimenSional types of motion other 
than the ones discussed above (e. g., Coulomb or square 
well potentials) may furnish further insight into the 
differences between the three HamiltOnians. (After sub
mitting this paper the author received a preprint of Im
mele et al., 36 where, besides the force free motion 
wavepacket, the cases of two interpenetrating wave
packets and barrier penetration have also been solved 
with Kostin's Hamiltonian. ) 

It remains unsatisfactory that Kostin's and Albrecht's 
potentials give harmonic oscillator solutions which os
cillate quantum mechanically with the unshifted fre
quency instead of the reduced classical damped frequen
cy in contrast to Kanai's Hamiltonian and to Hasse's 
potential. 

It also seems to be peculiar that the width of a free 
wavepacket calculated with Kanai's explicitly time-de
pendent Hamiltonian tends to a constant when time 
proceeds, which is in opposition to all other frictional 
Hamiltonians and also to the undamped one. 

Finally, we mention the paradox32 of the existence of 
the stationary states with constant energy expectation 
values. Together with other findings, this will be dis
cussed separately by Albrecht. 33 
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The renormalized projection operator technique for nonlinear 
stochastic equations. III 
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The solution of the nonlinear stochastic equation L(x, t,w) 1jJ(x, t,w) = g(x, t)+ f[1jJ(x, t,w)] is found via 
the renormalized projection operator technique and is approximated to be 

<1jJ(x,t»=ffdx'dt' <Gp(x,tjx',t') [1jJ;nt(x',O)+g(x',t')) -ffdx'dt'<P(x',t') [ffdxHdtH 

X < Gp(x, tjx' ,t') Go(x' , t'jxH ,tH) [1jJ;nt(xH ,0)+ g(x" ,t")] ) + ff dx' dt'< Gp(x, tjx', 1') <J[ 1jJH(X' , I')J). 

The terms <Gp(x, tjx', 1') and <Gp(x,tjx',I')Go (x',t'jx" ,t"» are the stochastic one- and two-point 

Green's functions. Also three conditions are shown that the projection operator must have in order to 

insure convergence. 

INTRODUCTION 
The area of stochastic equations and in particular non

linear stochastic equations appear in many representa
tions of physical reality. Problems in plasma turbulence, 
chemical kinetics in moderately strong turbulent flames, 
conduction of mass and heat in a turbulent velocity field, 
birth and death processes, and scattering phenomena 
in random media exhibit problems of secularity and lack 
of convergence of the series expansion. The nonlinear 
case further aggravates the situation by having no suit
able way to treat these terms. 

In this paper we study a certain class of nonlinear 
stochastic equations that are of the type L(x, t, w)</J(x, t, w) 
=g(x, t) + Jf</J] and by using the renormalized projection 
operatorl (RNPO) technique solve this equation and dis
cuss three facets: (1) the solution of the stochastic 
Green function with the projection operator (P(x, t) im
bedded in L(x, t, w), (2) what are the properties of 
(P(x, t), and finally (3) how does one evaluate the two
point cross correlation function. 

The value (</J(x, t) is defined to be I n</J(x, t, w)P(w) dw, 
where P(w) is the probability density with the normali
zation condition In P(w) dw = 1. Since the solution of 
stochastic equations involves P(w) which is not known, 
but usually the expected values of the observables are 
known along with their cross correlations, we find that 
the solutions of stochastic equations have all the prob
lems of its counterpart-the deterministic equations; 
however, we have the added problem of the manner of 
treating the averaging process. 

1. THE NONLINEAR EQUATION 

A general equation which describes a host of physical 
phenomena can be represented as 

L(x, t, w)</J(x, t, w) =g(x, t) + Jf</J(x, t, w)], (1. 1) 

where L(x, t, w) is a linear random operator with deter
ministic variables (x, t) and the random variable w; 
g(x, t) are the source and/or sink terms associated with 
the process, and finally Jf</J(x, t, w)] is a general nonlin
ear function of </J(x, t, w). If </J(x, t, w) were concentrations, 
thenJf</J] might be the nonlinear kinetic processes asso
ciated with the creation and annihilation of the species 
</Ji(x, t, w). However, if </J describes the heat transport, 
then Jf </J] could be the nonlinearities associated with the 
diffusive thermal conductivity. 
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The integral form of Eq. (1. 1) is 

</J(x, t, w) = </Jo(x, t, w) + L-l(x, t, w)g(x, t) 

+ L -l(X, t, w)Jf</J(x, t, w)], (1. 2) 

where L(x, t, w)</Jo(x, t, w) = 0 and ~ (x, t, w) = </Jo(x, t, w) 
+ L-l(x, t, w)g(x, t). The random function ~ (x, t, w) is the 
solution of the linear part of Eq. (1. 1) 

Let us now approximate Jf</J(x, t, w)] to be 

Jf</J(x, t, w)] =f{~ (x, t, w) + L -l(X, t, w)Jf</J(x, t, w)]} 

"'Jf~(x, t, w)] + (P(x, t))L-l(x, t, w)Jf</J(x, t, w)]. 

(1. 3a) 

(1. 3b) 

The averaged operator (P(x, t) is a projection opera
tion. Obviously, when (P(x, t) "'0, then Jf</J(x, t, w)] 
- Jf~ (x, t, w)] and the projection (P(x, t) physically has 
the meaning of measuring the deviation of Jf </J(x, t, w)] 
fromJf~(x, t, w)]. If the nonlinear random function va
ries linearly, then the operator (P(x, t) may be asso
ciated with the gradient of Jf </J] evaluated at (</JH (x, t) ; 
and in the case whenJf</J] is a vector it could be the 
Jacobian matrix of Jf</J]. 

Now, substituting (1. 3b) into (1. 2), one arrives at 

</J(x, t, w) = ~ (x, t, w) + L -l(X, t, w)Jf~ (x, t, w)] 

+ L-l(x, t, w) (P(x, t)L-l(x, t, w)Jf</J]. (1. 4) 

If one iterates (1. 4) by using (1. 3b) the series becomes 

</J(x, t, w) = ~ (x, t, w) +{1 + L -l(X, t, w)(P(x, t) 

+ L-l(x, t, w)(P(x, t))L-l(x, t, w)(P(x, t) 

+ .. '}L -l(X, t, w)Jf~ (x, t, w)] (1. 5) 

or 

</J(x, t, w) = ~ (x, t, w) +{1- L -l(X, t, w)(P(x, t))}-l 

XL-l(x, t, w).t1~(x, t, w)] (1. 6) 

and 

[L(x, t, w) - (P(x, t) ] </J(x, t, w) = g(x, t) +.t1~ (x, t, w)] 

- (P(x, t)~(x, t, w). (1. 7) 

If we just replace 

Jf</J(x, t, w)] -.t1~(x, t, w)] + (P(x, t) 

XL-l(x, t, w) <tP (x, t, w), 
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then Eq. (1. 7) has two distinct features relative to Eq. 
(1. 1). They are: First, the operator L(x, t, w) is re
placed by L(x, t, w) - (P(x, t», i. e., a part of the non
linear operator is imbedded in the unperturbed opera
tor; physically this is when the kinetic processes are 
coupled to the transport mechanisms. Secondly, 
A1J!(x, t, w)] is replaced by A¢fi(x, t, w)]- (p(x, t))1J!H(X, t, w). 

Let us now consider the Green's equation 

{L(x, t, w) - (P(x, t»}Gp(x, t I x', t', w) =]o(x - x')o(t - t') 

(1. 8) 

The subscript p refers to the projection associated 
with the particular Green's function. 

The solution of (1. 7) is 

1J!(x, t, w) = J J dx' dt'Gp(x, t I x', t', W){ifi,nt(X', 0) + g\x', t') 

+ A¢fi (x', t', w)] - (P(x', t'»¢fi (x', t', w)}, (1. 9) 

where ifi,nt(X', 0) is an initial deterministic condition. 
Performing the averaging of (1. 9), we find 

(ifi(x, t» = J J dx' dt'(Gp(X, t I x', t'»{IPIDt(X', 0) + g(x', t')} 

+ J J dx' dt'{(Gp(x, tlx', t')j[¢fi(x', t')]) 

- (P(x', t'»( Gp(x, t I x', t') ¢fi (x', t f»}. (1. 10) 

The problem now is threefold: (1) the solution of the 
stochastic Green's function, (2) what is the operator 
(p(x, t», and (3) how do you evaluate the cross correla
tions in integrand of (1. 10). Let us now address our
selves to these three problems. 

2. THE SOLUTION OF THE STOCHASTIC 
GREEN'S FUNCTION 

Recently there has been some work on the solution of 
this class of equations. 1,2 A particular method to this 
approach is the renormalized projection operator meth
od (the first paper in this series). We shall now apply 
this approach to the Green's function equation 

[L(x, t, w) - (p(x, t» ]Gp(x, t I Xf, tf, w) =Io(x - x') o(t - t'). 

(2.1) 

The' operator L(x, t, w) can be decomposed into a deter
ministic and stochastic operator assuming (Ll (x, t)) = 0, 
namely, 

L(x, t, w) '= Lo(x, t) + Ll (x, t, w). (2.2) 

Let us now write Gp(x, tlx', tl, w) as 

x (Q(x, t I x', t'» + oG(x, t I x', t ' w), (2.3) 

where oG(x, t I x', t', w) is the random fluctuation in the 
propagator field. The expected value of the field is 

(Gp(x, t)x', t'» 

= [1 + (Lo - (P) - (L1 (Lo - (P) )-1 L 1»-I(PO> ](0 
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and the projection operator (PO> is any subset of strong
ly connected graphs. 1 

If we substitute (2.3) into (2. 1) and average, we 
obtain 

[Lo- (P)][l- (Lo- (P) -(L1(L o- (P»-IL1)t
1(PO> 

x (q(x, tlx', t'» 

= - (L1 (x, t)oG(x, t I x', t'» + ]o(x - x')o(t - t'). (2.4) 

If we substract (2.4) from (2.1) and simplify, one ar
rives at 

oG(x, t Ix', t', w)=(Lo - (P) )-I(L1 oG(x, t I x', t', w) 

- (L1(x, t)oG(x, tlx', t'») - (Lo- (p»-l 

XL1[1- (Lo - (P) - (L1(Lo- (P»-IL1)>-1 

x(P~(Q.(x, t lx', t'». (2.5) 

As we defined previously, 1 consider the operator iI 
H=H - (H; 

Consequently, we have 

'l(x, t)(Gp(X, tl x', t'» 

= (Lo - (p»_l Ll (x, t)[l- (Lo - (P) - (L1 (Lo - p)-1 L1) )-1 

X(P~](q(x,tlx',tf» (2.6) 

and 

'l(x, t)oG(x, t lx', t', w) 

= (Lo - (P»-I(L1 (x, t)oG(x, t I x', t', w) 

- (L 1 (x, t)6G(x, f I x', t'»). (2.7) 

The reason why we defined the operator 'l(x, t) is be
cause of its property: ('IN(x, t)Gp(x, t lx', t'» = 0 for any 
function of Gp(x, t I x', t', w) and for all n. 

From the definition of nand (2.5) one arrives at 

(L1(x, f)oG(x, flxf, t'» 

== (L1 (x, t)'l(x, t) oG(x, f I x', t'» - (L1 (x, f)'l(x, t)) 

+ [1 - (Lo - (P) - (L1 (Lo _ (P»..1 L 1»-1 L1) )-l(p~] 

X (Q(x, fix', t'» 

and thus 

[Lo - (P) - (L1 (x, t)'l(x, t)) J 
x [1 _ (Lo - (P) - (L1 (Lo - (p»-1 L1) )_I(p 0)] 

= Lo - (P) - (L1 (Lo - (p)>-1 L 1) - (Po). 

(2.8) 

(2.9) 

The solution for the mean and fluctuating components 
become 

X[Io(x-x')6(t't') +(L1(x, f)n(x, t)oG(x, fix', t'» (2. lOa) 
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and 

oG(x,tlx',t',w) 

= - n(x, t)oG(x, t I x', f', w) - n(x, t)(Q(x, t I x', t'» 

- n(x, t)(Lo(x, t) - (P(x, t)) - (L1 (x, f) 

x [Lo(x, f) - (P(x, f» ]_1 L1 (x, t)) )-1(PO(x, t» 
x (Q(x, fix', f'». (2. lOb) 

Equations (2. lOa) and (2. lOb) can be solved consecu
tively, and one concludes that the mean value for the 
field is 

(Gp(x, fix', t'» 

= [Lo(x, t) - (P(x, m - (L1 (x, t)[Lo(x, f) 

- (P(x, t)) ]_1 L1 (x, t» - (P o(x, t» ]_1 

x{1- (L1 (x, t)n(x, f»[l + [Lo(x, f) - (P(x, t» 
- (L1 (x, f)[Lo(x, f) - (P(x, t»]..1 L1 (x, f» ]_1 

- (po(x, t» ]-1[Lo(x, f) - (P(x, t)) 

- (L1 (x, t)[Lo(x, f) - (P(x, t)) ]_1 L1 (x, f) 

- (p o(x, f» ]_1 + ... }10(x - x')o(f - f'). (2.11) 

By the RNPO method the perturbation series as ex
pressed in terms of powers of 

[Lo(x, t) - (P(x, f» - (Po(x, t» 

- (L1 (x, t)[Lo(x, t) - (P(x, t» ]-1 L1 (x, t» ]_1, 

which is itself a number of infinite series 

[Lo(x, t) - (P(x, t» - (P o(x, t)) 

- (L1(x, t)[Lo(x, t) - (P(x, f»]-lL1(x, t)]-1 

= to [k~(t.O {Lo(x, t)(L1(x, t)[Lo(x, t) 

- (P(x, t» ]-1 L1 (x, t)W" L01(X, f)(P(x, t)1 k' 

~ 

x ~ {Lo(x, f)(L1(x, f)[Lo(x,t)-(p(x, m]-1 
k'-:::Q 

XL1(x, t»}k" L01(X, t)(Po(x, m] k 

x k~OCt.o{Lo(X' f)(L1(x, t)[Lo(x, f) 

- (P(x, t)) ]-1 L1 (x, mY" L01(X, f)(P(x, t») k' 

~ 

x 6 {Lo(x, t)(L1 (x, t)[Lo(x, t) - (p(x, t» ]-1 
k-'::Q 

XL1(x, tlW'" L01(X, t)] . (2.12) 

The use of this propagator [Lo(x, f) - (P(x, t» ]_1 has an 
infinite number of terms associated with the nonlinearity 
Jl</J(x, f, w)1 imbedded in the series. In the case when 
(P(x, f» is zero, i. e., Jl</J(x, t, w)1=JliJi"(x, t, wl1, the 
propagator becomes 

[Lo(x, t) - (L1 (x, f)L 01 (x, t)L1 (x, m - (P o(x, t)) ]-1 

= to (~o {Lo(x, t)(L1(x, t)L~(x, f)L1(x, mr 
x L01(X, f)(P o(x, t))) k k~O [L01(X, f) 

The choice of the operator (Po(x, t» is such that it 
ensures the convergence of the series (2. 12) and if 

(1) /I{L o - (P) - (L1(L o - (P)]..1 L 1»-1(PO)/I« 1 and 

(2) (Lo - (P) - (L1[L o - (p) 1..1 L 1) - (P 0> )-110 (x - x')o(t - t') 
is the leading term in the series (2.12), 

then 

(G(x, t\x', t'» = (Gp(x, t\x', t'» 

and 

(Gp(x, t\x', f'»= (Lo- (L1[L o- (P) ]-lL1) - (P) 

- (P 0> )-1 10(x - x')o(t - t'). 

As we mentioned, the choice of the operator (PO> de
pends on the physical situation being investigated, and 
its plausibility analysis is also predicated on the same 
condition. 

A possible choice of (PO> might be: (1) the nearest 
neighbor operator 

(PO> '" (L1[Lo - (P) ]-1 L 1[L o _ (P) ]..1L1[Lo _ (P) ]-1 

x L 1[L o _ (P) ]-1 L 1) 

with the Green's equation 

(2.14) 

[Lo - (P) - (L1[L o - (P)]..1 L 1) _ (L1[L o _ (P) ]-1 L 1[L o _ (P) ]_1 

XL1[L o - (P) ]_1 L 1) ](Gp(X, t Ix', t'» 

=10(x - x')Ii(t- t') 

or (2) the Kraichnan projection 

(PO> "'(L1(x, t)[Lo(x, f) - (p(x, f»]..1L1(x, t» + (L1(x, t) 
X([Lo(x, f) - (P(x, t» + L1 (x, t) ]01)L1 (x, t» 

with the corresponding equation being 

[Lo(x, t) - (P(x, f» - (L1 (x, f)([Lo(x, t) - (P(x, t» 

+L1(x, f)]-1)L1(x, t»(Gp(x, fix', t'» 

= 10(x - x') o(f - f'). 

(2. 15) 

(2.16) 

(2.17) 

The solution for Eq. (2.14) is quite obvious. However, 
in Eq. (2.17) the result is achieved by producing a con
tinuous fraction. 

3. THE PROPERTIES OF THE OPERATOR <P (x, t) > 
At this point we shall consider what is the operator 

(P(x, f), i. e., what properties can be attributed to it in 
order to ensure a proper choice of it. As we said before, 
if (P(x, t»=O, thenj[</J(x, t, W)]=j[</JH(X, t, w)] and that the 
projection physically is a measure of deviation of 

J[</J(x, t, w)] fromj[</JH(x, t, w)]. 

Let us now focus our attention on the equation 

j[</J(x, t, w)] = j[</JH (x, t, w)] 

+ (P(x, f»r1(x, f, w)j[</J(x, t, w)]. (3.1) 

Solving for j[</J(x, t, w)], one obtains 

/[</J(x, t, w)]=</Jp(x, t, w) + [L(x, t, w) - (P(x, t» ]-1 

XL(x, t, W)j[</JH(X, t, w)], (3.2) 

where [L(x, f, w) - (P(x, t)) ]</Jp(x, t, w) = O. The term 
x(L1(x, f)L01(X, t)L1(x, t»Y" L01(X, t). (2.13) </Jp(x, f, w) is related to the result for the stochastic 
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Green's function in the previous section. Since our ini
tial condition is assumed to be independent of statistical 
variations, then 

l/Jp(x,t,w)=f f dx'dt'Gp(x,tlx';t',w)l/Jint(x'O). (3.3) 

If (P) - 0, we see 

L(x, t, w)j[l/J(x, t, w)] = L(x, f, W)j[l/JH (x, t, w)], 

which implies j[l/J(x, t, w)] - j[l/JH(X, t, w)] + l/Jo(x, f, w). Thus 
we see that [L(x, t, w) - (P(x, t» ]-1L(x, f, w) is a measure 
of deviation ofj[1f;(x, t, w)] from 1/!o(x, t, w) and if 
[L(x, t, w) - (P(x, t» ]-1L(x, t, w)« 1, thenj[l/J(x, t, w)] 
-l/Jo(x, t, w), this further implies that (P(x, t» 
»- L(x, t, w). 

Returning now to (3.1) and iterating, we arrive at 

j[l/J(x,t,w)] 

= {1 + (P(x, t»L-1(x, t, w) + ... }f[l/JH(X, f, w)] 

= {1- (P(x, t»L-1(x, t, w)}-1j[~(x, f, w)] 

= L(x, t, w)[L(x, t, w) - (P(x, t» ]-1j[l/JH(X, t, w)]. 

(3.4a) 

(3.4b) 

(3.4c) 

From Eqs. (3.4c) and (3.2) we have 

([L(x, t, w) - (P(x, t)) ]-1L(x, t, w) - L(x, t, w) 

x [L(x, t, w) - (P(x, t» ]-1} j[~ (x, f, w)] 

= l/Jp(x, t, w) 

or the commutator 

[[L(x, t, w) - (p(x, t))]-t, L(x, t, w)]j[~(x, t, w)] 

= l/Jp(x, t, w). 

(3.5) 

The commutator relationship can be transformed in 
terms of the Green's function and averaged to be 

([Gp(x, t I x', t')L(x', I') - L(x, t)Gp(x, t I x', t') ]j[lJlH]) 

= (lJlp(x', t'»5(x - x') 5(t - t') 0 
(3.6) 

Thus when one solves the linear equation and defines 
the operator (po(x, t)), the commutator condition must 
be maintained to ensure the validity and proper treat
ment of the nonlinearity f[l/J(x, t, w)]. 

At this point we are left to the averaging process, 
which is the third and final consideration. 

4. THE EVALUATION OF THE CROSS CORRELATIONS 

The averaging process can be separated only if the 
variations in two functions vary greatly from one an
other. This can only be determined by the parameter 
and functional relations of the physical problem. 

However, once the proper averaging has been per
formed, this will automatically dictate certain criteria 
for the solution of the linear stochastic Green's func
tion and properties of the operator (P(x, t». 

Let us now consider the case when the variations in 
the nonlinear functional are faster than those of the 
transport and linear processes, i. e., the correlation 
times in the nonlinear part are larger than the other 
processes. Thus Eq. (1. 10) becomes 
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(l/J(x, t» = f f dx' dt'(Gp(x, t I x', f'»{l/Jint(X', 0) + g(x', t')} 

- f f dx' dt'(P(x', f'» f f dx" dt" (Gp(x, f I x', t') 

x Go(x', t' Ix", f"»{l/Jint(X", 0) + g(x", t")} 

+ f f dx'dt'(Gp(x, tlx', t'» (f"[lJlH (x' , f')D. (4.1) 

Thus we see that the evaluation of (l/J(x, m depends on 
the solution of the linear stochastic Green's function 
(Gp(x,tlx',t'», the averaging of j[lJlH(X, f)], and the cross 
correlation of the Green's function for the equation 

L(x, t, w)Go(x, t I x', f', w) =I5(x - x')5(t - fl) 

and the stochastic Green's function. Consequently, one 
must solve the unperturbed and perturbed Green's func
tion, by using the renormalized projection operator 
technique, and then perform the average of the two 
Green's functions. 

Thus, since 

Go(x, fix', fl, w) 

= {1 + [Lo(x, t) - (p(O) (x, f» - (L1 (x, f)Lii1(x, t) 

x L1 (x, f» ]-1(p(O) (x, f» }(Go(x, f I x' , t'» 

+ 5G(x, f I x', f', w) (4.2a) 

[where (po(x, t)) is the projection operator associated 
with the unperturbed operator t ] and recalling that 

Gp(x, fix', f', w) 

= [1- [Lo(x, f) - (p(x, f» - (L1(x, f)[Lo(x, t) 

- (P(x, t» ]-1L1(x, t)) ]-1(po(x, t» 

x (Q(x', t' I x", t"» + 5Gp(x', t' I x", t" , w). (4.2b) 

we see that 

(Gp(x, t I x', t')Go(x', t' Ix", t"» 

= [1- [Lo(x, t) - (p(x, t)) - (L1(x, t) 

x [Lo(x, t) - (P(x, t» ]-1 L1 (x, t» ]-1(Po(x, t» ] 

x (Q(x, t I x', t'»[1 - Lo(x', t') - (p(O) (x', tf}) 

- (L1(x', t')Lii1(x' , t')L1(x', t,»]-1(p(O)(x', f'» 

x (Qo(x', t'lx", t"» + (5Gp(x, fix', t') 

x 5Go(x', t' I x" , t"». (4.3) 

The first term in (4.3) is the product of the solution 
of the mean Green's function which is the averaged pro
duct of the fluctuations. By the RNPO technique we gen
erate a series of consecutive equations for (Gp) and 5G. 
If we retain only the leading terms in the equations, i. e. , 
we have the two conditions mentioned in the second 
section. 

Then 

(Gp(x, t I x', t')Go(x', ff I x", t"» 

= [Lo(x, i) - (P(x, t» - (Lt(x, t)[Lo(x, t) - (P(x, t» ]-1 

XL 1(x, t» - (po(x, t»]-115(x - x/)5(t- t')[Lo(x', t') 

- (L1 (x', t')Lii1(x', t')L1(x', t'» - (pO (x' , t'» ]-1 

XI5(x' - x")5(t - t') + (5Gp(x, t Ix', t') 

X liGo(x', t'lx", t"» 

Vincent A. LoDato 
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since 

oGp(x, t I x', t', w) 

=(1- Up(x, t)]-tup(x, t)(Gp(x, tlx', t') + ... (4.5a) 

and 

oGo(x', t' Ix", t", w) 

= (1- Uo(x, t) ]-tuo(x, t)(Go(x', t' I x", t") + . . . . (4.5b) 

Recalling the definition of U(x, t) from the second sec
tion and combining (4. 5a) and (4. 5b) followed by aver
aging, we arrive at 

(oGp(x, t Ix', t')oGo(x', t' Ix", t"» 
~ .. 

'" .6 .6 {(L1(x, t)U:(x, t)L1(x', t')Up(x', t) 
N=O N'=O 

- (L1 (x, t)U,(x, t)(L I (x', f')Uff' (x', t'»} 

+ [Lo(x, t) - (P(x, t» ]-I(Gp(x, t I x', t'» 

X Lii1(x' , t')(Go(x', t' I x", t"». (4.6) 

Retaining the first and leading term in the series, we 
conclude 

(oGp(x, t I x', t')oGo(x', t' I x", t"» 

",[L o(x,t)-(P(x,t»]-I!! dx'dt'(Gp(x,tlx',t'» 

XLii1(x', t')! ! dx" dt"(Go(x', t' Ix", t") 

x (L1(x, t)Lt(x', t'). (4.7) 

The solution of Eq. (1. 1) has three types of terms; 
(1) a term due to the linear stochastic Green's function 
(a Dyson type equation), (2) a term due to the two-point 
stochastic Green's function (a Bethe-Saltpeter equa
tion), and finally (3) a term due to the propagation on 
the nonlinear functionj(IPH(x, t, w)], where the argument 
is replaced by the solution of the linear equation and 
the deviation of the nonlinearity is directly proportional 
to the product of the projection operator and the two
point correlation function. 

If we have the condition that 
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= (Gp(x, tlx', t')(f[IPH(x', t')D, 

this further implies that we have the following commu
tator relation; 

([(Gp(x, t Ix', t')L(x', t') 

- L(x, t)(Gp(x, t I x', t') ]J1IPH (x', t') D 
= (lJIp(x', t') o(x - x') o(t - t'). 

CONCLUSION 

Our results show that the chOice of the operator 
(P(x, t) is extremely crucial and that a series of condi
tions must be simultaneously met namely; for the linear 
stochastic Green's function we have 

(1) II[Lo - (P) - (L 1[Lo - (P) ]-IL1) ]-I(pO) II «1 

and 

(2) [Lo - (P) - (L1[Lo - (P) ]-IL 1) - (po) ]-1/0 (x - x')o(t - t') 

is the leading term in the series (2. 12). In the case of 
the nonlinear representation we have the commutator 
relation 

([Gp(x, t I x', t'), L(x, t) ].t1lJ1H (x', t')]) 

= (IPp(x, t)o(x - x')o(t - t'), 

where the superscript 0 refers to the change of x, t 
- x', t' depending on the side L is with respect of G p; 
and finally the condition concerning the two-point 
Green's function is that (P) is such that 

[Lo(x, t) - (P(x, t» ]-l(Gp(X, t I x', t'» 

x L;8x, t)(Go(x', t' I x", t"»(L1(x, t)L«x', t') 

is the leading term in the series (4.6). Therefore, the 
choice of the operator (P(x, t) must simultaneously in
corporate the above conditions. 

IV.A. LoDato, J. Math. Phys. 14, 340 (1973), Paper I. 
2V.A. LoDato, J. Math. Phys. 15, 1740 (1974), Paper II. 

Vincent A. LoDato 2016 
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In the last few years an extensive literature has developed on linear canonical tranfonnations and their 
representation in quantum mechanics. Applications of these results have been made to clustering theory in 
nuclei, problems of accidental degeneracy, etc. In the present paper we wish to tum our attention to 
nonlinear canonical transfonnations. We show that by dealing with appropriate functions fa (a = 1, ... ,2n) of 
Xi' Pi (i = l, ... ,n) rather than with these variables themselves, we can in principle set unambiguously the 
equations that detennine the representation in quantum mechanics of the canonical transfonnation under 
study. This result holds when the old and new functions fa have the same spectrum. We discuss specific 
examples when this last condition is satisfied: nonlinear canonical transfonnations in the radial variable 
that were obtained from projection of linear ones in higher-dimensional spaces; canonical transfonnations 
that take us from one Hamiltonian to another with the same spectrum, be this one continuous or discrete; 
canonical transfonnations that relate two sets of integrals of motion (which include the Hamiltonians) 
when we are dealing with phase spaces of dimensions higher than 2, etc. We discuss briefly, in the 
concluding section. the possibility of extending our analysis to canonical tranfonnations that do not 
conserve the spectrum of the relevant operators. 

1. INTRODUCTION 

It is an interesting historical fact that while canonical 
transformations were of considerable interest to physi
cists when they developed the foundations of quantum 
mechanics1,2 in the 1920'S, this interest wained after the 
objective was achieved. We are not referring to point 
transformations, such as those associated with the ro
tation or permutation of the coordinates, whose impact 
on the further development of quantum mechanics has 
been conSiderable, 3,4 but rather to genera! canonical 
transformations in which the new coordinates and mo
menta are functions of both the old. 

The interest was rekindled occaSionally in the next 
three decades when particular problems led to groups of 
canonical transformations. Among the examples we 
have the work of Fock5 and Bargmann6 on the 0(4) sym
metry group of the Coulomb problem and the unitary 
group of symmetries of the harmonic oscillator origi
nally noticed by Jauch and Hill. 1 A real renaissance on 
the subject does not start though until the extensive use 
by ElliottB of the SU(3) symmetry of the three-dimen
sional oscillator in problems of nuclear structure. The 
latter symmetry is related with groups of linear canoni
cal transformations9 and these, together with their uni
tary'representations in quantum mechanics, have been 
extensively discussed in the literature. 10-15 As indicated 
in Ref. 15 (where further information on the literature 
is also given) these developments have had a wide range 
of applications going from problems in nuclear cluster
ing theory to the understanding of the groups responsi
ble for accidental degeneracy. 

While the situation with the representations of linear 
canonical transformations in quantum mechanics was 
clarified, it remained more obscure in the general 
case. For nonlinear canonical transformations several 
problems appear. First the differential operators, in 
the equations that determine the unitary representation 
in quantum mechanics, 12-15 may have fractional or 
negative powers and thus are undefined. Second, as XI, 
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Pi do not commute, the new coordinates and momenta 
XI (x, p), ]il(X, p) that are functions of the old may not be 
well defined as quantum mechanical operators16 if they 
contain products or other types of functions of both 
XI, PI' Third, and more important, the operators Xi' PI 
and Xi' ]ii may have different spectra, as happens for 
example in the trivial point transformation x=x2. What 
is then the sense of a representation U which relates 
Xi' PI with XI, PI by the transformations2 

(1.1) 

implying that the spectra of the old and new variables 
are the same? 

In the present work we do not intend to deal with the 
third problem though we will make some general re
marks on it at the conclusion of this paper. We will 
discuss though the first and second problems. We begin 
by obtaining the equations that determine the represen
tations of nonlinear canonical transformations. We then 
solve these equations in particular examples for which 
the third problem is not present, i. eo, the new and old 
operators involved have the same spectrum. While these 
examples are very special, the approach to them is gen
eral enough to suggest what could be done in other 
cases. 

2. THE EQUATIONS THAT DETERMINE THE 
UNITARY REPRESENTATION OF A CANONICAL 
TRANSFORMATION 

Consider a classical system with n degrees of free
dom, described by the n coordinates Xi and the n mo
menta Pi (i = 1, ... ,n), which we shall put together into 
a Single 2n-component vector12,13 zo<' Ci. = 1, ... , 2n, 

Zi=Xi }. _ z= 1, 0.' ,no 
Zn+I -Pi 

(2.1) 

The Poisson bracket between two functions f(z) , g(z) 
can be written as 

Copyright © 1975 American Institute of Physics 2017 



                                                                                                                                    

f ... } 'Of 'Og 
1.1, g = 'Oz", Ka.8 'Oz

8
' (2.2) 

where we used the summation convention for repeated 
indices and ( 

11K •• II ~ ~I :} (2.3) 

with I being the n-dimensional unit matrix. In particu
lar, the components za., zil will satisfy the identify 

(2.4a) 

or equivalently 

{x;,pj}= 0ij' {xl' Xj}= {P;,Pj}= O. (2.4b) 

Now assume that we are given a set of 2n independent 
relations 

(2.5) 

from which the Z'" can be obtained in terms of the f", and 
hence of the za.' We thus require that the Jacobians 
I 'Oft>/'Oz81, I 'Ola/'Ozill are not identically zero, so that 
(2.5) can be solved for the za. locally, even though the 
solution may not be unique. Suppose that we can make a 
definite choice among the various solutions, so that the 
new z'" obey the Poisson bracket relations 

(2.6) 

with respect to the old za., i. e., that the transformation 
is canonical. We shall find a condition that the ft>' s must 
fulfill, so that (2.6) are satisfied. We can write (2.6) as 

'OZa. 'Ofy· K § 'Oh!_K 
'OJr. 'Oz

6 
6", 'OJ,.. 'Oz", - a.8, (2.7) 

from which we obtain 

'ib 'O~a. afy' K
6
", a~1l 'OIA- 'O~ = ~K"'8 'OD (2.8) 

'Oza. 'Ofy' aZ6 'Of>! az", aZ Il 'Oza. aZ8 

Since 

(2.9) 

we have 

(2.10) 

or 

(2.11) 

Therefore, a necessary condition for the transforma
tion (2.5) to be canonical, is that the Poisson bracket 
betweenfy andf). with respect to the z'" be the same as 
that betweenlr and];. with respect to the z"., when use 
is made of (2.5) to substitute the za. in terms of the za.0 
That this condition is also sufficient is clear, since the 
steps leading from (2. 6) to (2. 11) can all be taken in the 
reversed order. 

We shall now discuss the corresponding quantum 
mechanical problem, obtained when the classical quan
tities Xi' Pi, X;, Pi in (2.5) are regarded as operators. 
In dealing with the quantum problem, we shall follow 
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Dirac's convention2 of attaChing primes to those quanti
ties that are interpreted as c-numbers. We shall also 
distinguish between the eigenstates of the old and new 
operators by means of angular and round brackets, re
spectivelY,12-15 e. g., 

Xi Ix') =x; Ix'), Xl I x') =x; I x'), 

Pilp')=p;lp'), Pilp')=p;lp'). 
(2. 12a) 

(2. 12b) 

The problem of finding, in quantum mechanics, the 
unitary representation of the classical canonical trans
formation (2. 5) is thus that of finding the operator U 
that relates the barred and unbarred operators, or the 
round and angular brackets: 

Xi= Uxicr1 , Pi=UPi U-l, 

I x') = U I x') , Ip') = Ulp'). 

(2. 13a) 

(2. 13b) 

In the coordinate representation, the matrix elements 
of U can thus be written as 

(X' I U I x') = (x' I x'). (2.14) 

In terms of (2.5), considered now as operator rela
tions, U must satisfy relations analogous to (2. 13a), 
i. e., 

(2.15) 

or 

(2.16) 

As was mentioned in the Introduction, relations 
(2. 13a) and (2.15) only make sense if the operators Xi 
and Xi have the same spectrum, with this same condi
tion on the pairs PI' Pi and 1a., f",. If these requirements 
were not fulfilled, i. eo, if the third problem mentioned 
in the Introduction appeared, perhaps the appropriate 
starting point could be Eq. (2016) instead of (2.15), with 
no unitarity condition on the operator U; in fact, U 
might not even have an inverse. 

Going back to (2.16), we introduce the unit operator 
J Ix")dx"(x" I betweenj", and U and take the matrix ele
ment of both sides of (2.16) between the states (x' I and 
Ix'), which are both eigenstates of the old position 
operator. 

We thus have 

f (x' I fa. (x, P) I x") dx" (x" I U I x') 

= f (x' I Ulx")dx"(x" 11", (x, p) Ix'). (2. 17) 

In the left-hand side we write the matrix elements of 
fa in terms of the old variables xi, - ia/oxi, and using 
the last equality in (2. 15) 

(x' lla (i, P) I x") = f"'~" - i a~/) O(X' - x"). (2. 18) 

Recalling also, from (2.14), that 

(x" I U I x') = (x" I x') , 
the left-hand side of (2.17) becomes 

f f",0', -i 'O~/) o(x' - x") dx" (x" I x') 

= f", (x', - i a~') (x' Ix'). 

P.A. Mello and M. Moshinsky 
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Concerning the right-hand side of (2.17), we first 
write it as 

J (x'I ulx")dx"(x" 11 .. (x, p) Ix/> 

= [j (j/ll~(x, p) I x") dx"(x"l U' I x') ]*, (2.21) 

where we used the relations: 

UiJFJk= (UF)ik= [(UF)!i]* = [(F'lf)ki]* = (F!i'1i)*' 
(2.22) 

We can then, using the notation (2.14), write (2.21) as: 

[f n(i', - i a~/) O(X' - x") dx"(x" Ix/> ] * 

=[lJ(X/,-i a~/) (X' I x') ]* 
=[lJ~"-i a~/) r (x/lx/). (2.23) 

Equating (2.20) and (2.23), we obtain 

fa ( x', - i a~/) (xII X') 

=[l .. t(X/,-i a~/) r (x/lx/), a=1, ... ,2n, (2.24) 

which form a set of 2n coupled differential equations for 
the transformation bracket (x'I x'). 

Sometimes the relations between Xl' Pi and Xi' Pi 
is sufficiently simple that one can work with them di
rectly, giving 2n differential equations of the type12,13 

Xl (XI, - i a~/) (x/lx/) =x;(x/lx/), (2. 25a) 

_ (' . a ) ( I I-I) _. a (' I-I) Pi x, - 1 ax' x x -1 ax; x x 0 
(2. 25b) 

On occasions, however, it might prove advantageous 
to use combinationsf .. of the variables Xi' Pi' which 
might be more convenient to handle, especially as far 
as the corresponding quantization is concerned. If we 
can find combinations fa for which the first and second 
problems mentioned in the introduction do not appear, 
then it is desirable to use the general equations (2. 24) 
instead of (2.25). 

Particular applications of the ideas which we have 
just discussed will be considered in the following 
sections. 

3. NONLINEAR CANONICAL TRANSFORMATIONS 
IN RADIAL PHASE SPACE 

The group of canonical transformations we wish to 
consider comes from the linear transformation 

r=ar+bp, p=er+dp, ad-be=l, (3.1) 

where all the vectors are two dimensional. Taking into 
account that the angular momentum17 remains invariant 
under the transformation (3.1) and denoting it by A, we 
have for the radial coordinate and momenta (which in
stead of r, Pr we again call x,p) the classical canonical 
transformation17 

(3.2a) 
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_ ae X2 + bd(p2 + A2X-2) + (ad + be)xp 
p = La2x 2 + b2 (p2 + A 2X-Z) + 2ab xp ]172 (3.2b) 

To determine the representation (X' I x') for the case 
(3.2) we proceeded, in Ref. 17, by the trick of project
ing from the unitary representation of the linear canoni
cal transformation (3.1) in four-dimensional phase 
space. If we had wanted to use Eq. (2.25) directly we 
immediately face two problems. One, which is simple, 
is how to interpret products such as xp as operators, 
which is resolved if we use the Hermitian from 
(xp + px)/2. The other concerns the fact that we have 
square roots and inverses of differential operators. For 
the latter problem we note that instead of the operators 
in (2.25) we could have used some function of them. 
For example consider Eq. (2. 25a) and apply to both 
sides of it the operator P taking into account that, as 
a function x', - ia/ax' only, it commutes with x'. Then 
using (2. 25b) we have 

_ (, _ a) -(' _ a) I .. ' 1-') p x, - 1 ax' x x, - 1 ax' ~ x 

.-, a 1"/1-/) 
=1X ax' ~ x . (3.3) 

A similar result holds when we apply the operator x 
to both sides of (2. 25a). Symmetrizing Eqo (3.3) we see 
that the unitary representation (X' I x') satisfies from 
(2.25) and (3.2) the equations 

[ a
2
x '2 + b2 

(- a~t2 + ~ ) - iab (XI a!' + a!' x')] (X, Ix') 

=x,2(x/lx'), (3.4a) 

[ aex'2+ bd (- a~/2+~) - ~(ad+ be) (XI a!' + a!, xl)J 

x(x/lx/)=£(x'~+~x') (x/lx/) (3.4b) 2 OX' ax' , 

10 ~ (x' I x') dx' (X' I x") = O(X' - xn
), (3.4c) 

where (3.4c) is due to the fact that the spectrum of 
both x', x' goes from 0 to 00. We could also have arrived 
at Eq. (3.4) if we had started with the hermitized form 
of the operators x2, xp and employed the general equa
tions (2.24). 

Equations (3. 4a, b) are then a set of two well-defined 
partial differential equations in x', x'. To solve them we 
multiply the first by d and the second by b and subtract. 
U sing the relation ad - be = 1, we arrive at the equations 

( ax'2 - ibx' a!' ) (xII x') 

= (ax,2 - ibx' a~/) (x' I x'). (3.5) 

Proposing a solution of (3.5) of the form 

(x'lx/) 
= f(x', x') exp[ - i(2b)-1 (ax 12 + dX'2 )], 

we obtain that 

, a (' -I) -, a (' -I) 
X ax,fx,x =x ax,fx ,X , 

and thus f is only a function of the product of these 
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variables, i. e., I(x'x'). Substituting in (3.4a) we get 
finally that I(x'x') satisfies the equation 

which has the immediate solution 

I(x'x') =A(x'x')1/2 JI" (b-1x'x'), 

(3.8) 

(3.9) 

where A is an arbitrary constant, JI" is a Bessel func
tion and 

(3.10) 

We still have to satisfy the normalization condition 
(304c) which is easily achieved18 by selecting A as b-1 

and thus <X' I x') becomes 

<X' I x') = b-1(x'x')1f2 JI" (b-1x'x') exp (- ;b (ax,2 + dx'2»), 

(3.11) 

which coincides with the result of Ref. 17 obtained by 
proj ection from the larger dimensional representation 
of the linear canonical transformation (3.1). 

The replacement of Eqs. (2.25) with the operators 
x, p given by (3. 2), by the Eqs. (2.24) associated with 
the hermitized form of x 2, xp lead to the "bonafide" set 
of partial differential equations (3.4). For the latter, 
problems of the type one and two mentioned in the Intro
duction (fractional or negative powers of the differential 
operators or order of factors) disappear. In fact, we 
obtained the explicit solution (3.11) of Eqs. (3.4). 

The procedure followed in this section indicates the 
importance of using functions of x, p, rather than the 
observables themselves, in obtaining the equations that 
determine the representation of a canonical transforma
tion. In the next section we apply this approach to 
canonical transformations in two-dimensional phase 
space that take us from one Hamiltonian to another. 

4. REPRESENTATIONS OF CANONICAL 
TRANSFORMATIONS RELATING DIFFERENT 
HAMILTONIANS WITH THE SAME 
CONTINUOUS SPECTRUM 

Let us consider two classical Hamiltonians H and Ii 
associated respectively with the phase space variables 
x, p and x, p by the equations 

(4. la, b) 

where we take the mass as unity. What is a canonical 
transformation that takes H into Ii? We start by consid
ering the variables canonically conjugate to H, Ii; they 
are clearly the time19 and as classically p=x, p=i:, 
we get 

rx dy - (x dy 
T= Ja [2H _ 2V(y)]1!2 ' T= J. [2H - 2V(y)J172 ' 

(4. 2a, b) 

where y is an integration variable that allows us to de
termine T as a function of x and the H of (4.1a) and sim
ilarly for f. The a, a are arbitrary functions of H. We 
easily check that 

{T, H}x,p = {T, ilh,p = 1. (4.3) 
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If we now establish the equations 

T(x,p} = f(X,p} , H(x,p) =H(X,p), (4. 4a, b) 

we get x, p and x, p related by a canonical transforma
tion, 19 which furthermore is, by construction, the one 
that takes H(x,p) into Ii(X,p). 

The classical part being clear we now turn to the 
quantum picture, L e., the determination of <X' Ix'). To 
avoid the problems of the third type that were mentioned 
in the Introduction we shall consider Hamiltonians H, Ii 
that have the same spectrum E which, in this section, 
we assume continuous and restricted by 0 ~ E < 00. 

In Fig. 1 we show two potentials, indicated by the 
solid and dotted lines that give the type of spectrum we 
demand. Both vex) and Vex) are positive for all x, van
ish at infinity and become infinite at x = O. The last re
striction has as its purpose that eigenstates of H, Ii 
should be nondegenerate. If Vex), Vex) are positive, 
regular at x= 0, and vanish at ± 00, the states are doubly 
degenerate depending on whether the wavefunction prop
agates to the left or right. This last case requires only 
a trivial extension of the reasoning that we shall pro
ceed to implement for potentials of the type shown in 
Fig. 1, extension that we will indicate at the end of this 
section. 

Before proceeding to derive the equations that deter
mine the unitary representation associated with the 
canonical transformation (4. 4a, b) we note that we could 
replace (4.4a) by the equation 

K(H, T)=K(Ii, f), (4.4c) 

where K is some arbitrary function. Clearly in the 
classical case Eqs. (4. 4a, b) and (4. 4b, c) lead to the 
same canonical transformation x=x(x, p), p=p(x,p). 
But in quantum mechaniCS, as will be seen in the ex
amples discussed in the next sections, K(H, T) may be 
a function of x,p that does not present problems of the 
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\ 
\ 
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'--- -" 
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"
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FIG. 1. The potentials V(x) and V(x) that define the two Hamil
tonians H, ii to be re lated by a canonical transformation. 
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type one and two that were mentioned in the Introduction. 
Note that K(H, T), K(H, T) are functions of x, p and 
X, p, respectively, which we could write as G(x,p), 
G(X,Jij. Equations (4.4c) then take the form 

(4.4d) 

We can finally state that the classical canonical trans
formation is determined by the two equations (4. 4b, d). 

The unitary representation (x' Ix') associated with the 
canonical transformation defined by (4. 4b, d), for po
tentials of the form given in Fig. 1, satisfies then equa
tions of the type (2. 24) which now take the form 

H(X',-i a!,) (x'jx')==H(X,-ia~,)(x'jx')' (4.5a) 

G( ' . a) 1,,'jT)--G*(-' • a) 1"'1-') x , - l ax' v< x - x , - z ax' v< x , 

(4.5b) 

1o~ (X' I x') dx'(x'j x") = o(X' - XN). (4.5c) 

In (4.5) the Hamiltonian H is both Hermitian and 
real and thus Ht * = H, while we take the function G as 
Hermitian (or if it is not so originally we hermitize 
it) and therefore GN = G* . 

How can we proceed to solve Eqso (4. 5) in a general 
way? First we look for the normalized eigenfunctions 
of the Hamiltonians 

H(X',-i a:') l/JE(X') = El/JE(x') , 

li(x',-i a~') IJiE(X') = EIJiE (X') , 

10'" l/Jl(x') l/JE' (x') dx' = O(E - E'), 

10'" 1Ji~(x') ~E' (X') dx' = O(E - E'). 

(4.6a) 

(4.6b) 

(40 6c) 

(4.6d) 

Furthermore, from the completeness of these eigen
functions we must have the following decomposition of 
the unit operator 

1000 

l/JE(X') l/J;(XN) dE = o(x' - xN), 

1000 

~E(X')IJi;(x") dE == o(X' - xN
). 

(4.6e) 

(4.6f) 

From Eqs. (4.6) we see then immediately that if we 
write 

• (x'/ x') = 1000 

exp[ic{> (E) ] </iE(X') '$; (X') dE, (4.7) 

where c{l(E) is a real as yet undetermined function of E, 
Eqs. (4. 5a, c) are satisfied. It remains then to satisfy 
(4.5b) which should determine the phase factor c{l in 
(4.7). We can then write (4.5b) as 

10
00 

exp(ic{l(E)] {[G 0',-i a!') </iE(X')J~~(X') 

- </iE(X') [G (X" - i a~') IJiE(X')] * } dE= O. (4.8) 

Equation (4.8) is a complicated transform of exp[ic{l(E)] 
that must vanish for all x', x'. In principle it should 
determine the c{l(E) though not necessarily in a unique 
fashion. Once this is achieved the integral (4. 7) can be 
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evaluated leading to (X' Ix'). We shall implement this 
program explicitly in the next section for centrifugal 
potentials of different strengths. 

As a last point we indicate that if Vex), vex) are posi
tive, but regular at the origin and vanish at ± 00, we 
must consider eigenfunctions l/J11(x,), iJ!11(X') associated 
with the fact that the solutions represent waves going 
to the right or to the left. We have then also a corre
sponding phase c{l±(E), and (X' Ix') is given by the sum 
of two terms of the type (4.7), one with a+ and the 
other with a - sign. 

5. CANONICAL TRANSFORMATIONS RELATING 
CENTRIFUGAL POTENTIALS OF DIFFERENT 
STRENGTHS 

In this section we consider the problem where the 
Hamiltonians H, if are given by 

(5.1a) 

(501b) 

where X, X are two arbitrary real numbers. According 
to (4.2) the corresponding T, T will be given by 

T= (2H)-1(2Hx2 - ;\.2)1/2 = (2H)-1 xp, 

T = (2l:l)-1 xp, 

(502a) 

(5.2b) 

where we have taken a, a so that their contribution to 
(4.2) is zero. We easily check that {T,H}x.J>={T,Hk.JI 
= 1 and furthermore we can introduce the function 

K(H, T)=G(x,p)=2HT=xp, 

K(il, T)=G(X,p) = 2HT=xp. 

(5.3a) 

(5.3b) 

The classical canonical transformation that takes us 
from H to H is, from (4. 4b, d), given then by the 
equations 

1 2 ;\.2 1 -2 r 2 

zp +2?=zP +2X2' (5.4a) 

xp='Xp, (5.4b) 

which lead to 

-_ xp +A 
( 

2 2 "2)1/2 
x-x x2p2 +;\.2 , (5.5a) 

__ (X2p2 +;\.2 )1/2 
p-p X2p2 + X2 , (5 0 5b) 

where again we check that ~,p}x.J>=1. 

We wish now to find the unitary representation (X' Ix') 
corresponding to the nonlinear canonical transforma
tion (5. 5a, b). We shall achieve this in two ways, one 
by using an expansion of the type (4.7) and the other by 
directly solving Eqs. (4.5). 

For the first type of approach we need the eigenstates 
of the Hamiltonians (5.1). Writing 

E=~k2, JJ.=(;\.2+t)1/2, 1:L=(X2+W/2, (5.6) 

th~se become, in the notation of (4. 6), 

l/JE(X') = (x')112 J,. (kx') , 

P.A. Mello and M. Moshinsky 
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where the JI"' s are Bessel functions of the order indi
cated. The integral (4.6c) is then18 

fo~ <p~(x') <PE' (x') dx' 

= fo~ x' JI" (kx') JI" (k' x') dx' == (kk')-1/2 6(k - k') 

= 6(E- E'), (5.8) 

and similarly for IiJE(X'), so that the functions are nor
malized. We can thus, from (4.7), write 

0c' I x') == fo~ exp(iX(k)] (kx,)1/2 JI" (kx')(kx,)1/2 Jji(kx') dk, 

(5.9) 

where we replaced E by ik2 and epeE) = X(k). It remains 
then to use (4. 5b), which in the Hermitian operator 
form says 

_ 1 (-' 0 -, (3 ) I .. ' 1-') - - 2i X ax' + x ax' \0< x (5.10) 

as G(x,p) =xp, G(X,p) ==xp, 

Applying (5.10) to (509) and noticing that the effect of 
x'a/ax' on (kx')1/2 JI" (kx') is the same as kalak, we 
obtain 

-i(X' a!' +x' a~' +1) 1~ exp(iX(k)] 

x (kx') 1 1 2 JI" (kx') (kx') 1 12 Jji (kx') dk 

=-iIa~ exp(iX(k)][(ka~+l) 

x (kx')1/2 JI" (kx')(kx')11 2 Jji(kx') ] dk 

[ ~ aX(k) 
= - 0 --ak exp[ix(k)] 

X (kx') 11 2 JI" (kx')(kx,)1/2 Jji(kx') kdk== 0. (5.11) 

The last integral was derived by integration by parts, 
which is allowed in the sense of distribution theory, as 
the Bessel functions for k - 00 oscillate quickly and 
thus average out to zero in any integraL 

Equation (5.11) will then be satisfied ifax(k)/ak = 0, 
implying that X(k) is a constant which, without loss of 
generality (our representations are ray representa
tions14), we can take as 

X(k) =0. (5.12) 

Introducing this value in (5.9) we find that the result
ing integral, which is a Hankel transform, 20 is tabu
lated for x' "* x'. When x' = x' we must use the asymptotic 
form of the Bessel functions to determine the 6 function 
behavior at that point. The full discussion is given in 
the Appendix and here we only present the final 
expression 
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0c' Ix') '" epl" ji (x' ,x') == cos (j.J. - 'ii)11' 6(x' - x') 
2 

+ 

2r«j.J. + 'ii)/2 + IJ .! (x'2) I" 12 + 1/4 
r[(j.J. - j.J.)/2] r(j.J. + 1) x' x'2 

( 
j.J. + 'ii j.J. - 'ii X'2 ) 

xF -2- + 1, -2- +1; j.J. +1;?2' ' 

2r«j.J. + 'ii)/2 + IJ 1 (X'2) jj;/2+ 1/4 
r[(j.J. - j.J.)/2]r(j.J. + 1) x' ? 

x (j.J.+'ii 'ii-j.J. - X'2) F -2- +1, -2- +1,j.J.+l;? ' 

x'<x' 

x'<x', 

(5. 13) 

where r is a gamma and F a hypergeometric function. 20 
We also introduced a notation epl";;(x', x') for this func
tion, as we shall need it in Sec. 7 in the discussion of 
problems in two dimensional configuration space, We 
note that when used inside of an integral with respect 
to x', x', the curly bracket part of 0c'lx') should be 
interpreted in the sense of a principal value as indi
cated in equation (All) of the Appendix. 

For the present problem the unitary representation 
0c'lx') in quantum mechanics can also be obtained by 
solving directly Eqs. (4. 5a, b), which now become 

( 
a2 ;\,2 a2 X2) 

- ax,2 + ? + ax.,z - X'2 0c'lx') == 0, (5. 14a) 

(x' a!' +x' a~' +1) 0c'lx')=o. 

Introducing the variables p, {J by the definitions 

x' = p cosh{J, x' == p sinh{J, 

Eq. (5. 14b) becomes 

( p a~ + 1 ) 0c' I x') == 0, 

whose solution for p"* ° is 

0c' I x') == p-1j({J). 

(5.14b) 

(5.15) 

(5. 16) 

(5.17) 

Substituting in (5. 14a) we obtain for j({J) the ordinary 
differential equation 

Now introducing the variable 

z = tanh2{J == (X' / X')2 

and the new function F(z) through the relation 

where 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

and j.J., Ii are related by (5.6) with A, A, we obtain for 
F(z) the equation 

z(l- z) ::; + [(JT + 1) - (it + 3)z] :: +b(~ + 1)2 +(~YJF 
= 0, (5.22) 
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which is a hyper geometric equation, 20 whose solution 
appears in the curly bracket part of (5.13). 

We have determined (;e'lx') by two methods in a 
particular case of potentials of the form illustrated in 
Fig. 1 and whose spectra are limited by OE;E< co. The 
possibility of extending the analYSis to other cases 
will be discussed in the following sectionso 

As a final point we note that we made a very particu
lar choice for the variables T,T canonically conjugate 
to H, if. We could have certainly added an arbitrary 
function g(H)/(2H) of H to T and in that case Eqs. (5.4) 
would become 

1 2 ;\.2 1 -2 X2 

2.P + W== 2.P + 2X1' xp + g(H) ==xp. (5.23) 

The solution is again given by (5.9), but now the equa
tion that determines the phase X(k) is 

(5.24) 

Obviously for any phase X(k) we have a canonical trans
formation to which it corresponds. 

6. CANONICAL TRANSFORMATIONS RELATING 
HAMILTONIANS WITH THE SAME DISCRETE 
SPECTRA 

In Sec. 4 we derived a procedure for determining 
(;e'lx') for canonical transformations that take a 
Hamiltonian H into another one Ii that has the same 
continuous spectrum 0 E; E < co. It seems that the pro
cedure is feasible for discrete spectra so long as they 
are the same. We shall illustrate the approach by dis
cussing a one-dimensional problem in which we have 
an oscillator potential plus a centrifugal term, i. e. , 
when the classical Hamiltonian can be written as 

(6.1) 

From (4.2) the canonical conjugate variable T asso
ciated with H takes the form 

1 . x2 
- H 1T 

T== 2. arcsm (H2 _ ;\.2)17 2 + 4 

== - t arcsin[ (H2 
- ;\.2,-

112211] + i ' (6. 2) 

where for later convenience we add a constant 1T/4 to 
the indefinite integral in (4.2), which obviously does 
not alter the fact that {T, H}== 1. Furthermore, we in
troduce the generators of the Lie algebra of the dynami
cal group 0(2,1) of the problem whose Hamiltonian is 
(6.1), i. e., 11 

/1 == t(p2 + .~..2/ x 2 - x2), 12 == t(xp + px), 

13 == t(p2 + A2/X2 + x2) 

== tHo (6.3) 

Weare now interested in the representation (;e' I x') 
in quantum mechanics of the canonical transformation 
that takes H into 

Ii==t(p2+~ +x2), (6.4) 

where the strength of the centrifugal term X"*;\.. Con
Sidering H, Ii as quantum mechanical operators we can 
obtainl1 

2023 J. Math. Phys., Vol. 16, No. 10, October 1975 

(6.5a) 

( a )- --Ii x', - i ax' I/!n(X') = (2n + jJ. + 1) I/!n(X') , (6.5b) 

where jJ., Ii are related with A, X by (5.6) and the lfin{x') 
are normalized, i. e. , 

(6.6) 

and similarly for ~n(X'). Furthermore, considering the 
generators II (i== 1, 2, 3) of (6.3) of the dynamical group 
0(2,1) as quantum mechanical operators, we have the 
relations17 

I.I/!n(x') == Un + jJ. + i ± i)(n + i ± t)]1/2I/!n.1 (x'), 

i.~n(X') ==(n+ Ii + i± i)(n+ i±i)]1/2~ni1(X')' 

(6.7a) 

(6.7b) 

where I. =11 ± il2 and the i I (i= 1, 2, 3) are defined as in 
(6. 3) with all variables and parameters being replaced 
by the barred ones. We note furthermore that from the 
relation between 13 and H in (6.3) and Eqs. (605), (6.7) 
we have that the operators 1'/, ~ determined by 

1'/ = (I3 + (jJ. - 1)/2]-1/21+, 

~ =1'/' =1.[13 + (jJ. -1)/21-1/2 , 

(6.8a) 

(6.8b) 

which are well defined when operating on I/!n(x'), give 

1'/1/!n(x') =Vn+ 1I/!n+1(x'), (6.9a) 

~1/!n(x') = -rn 1/!n_1(X') , (6.9b) 

i. e., they act as creation and annihilation operators of 
an ordinary oscillator. A similar relation to (6.9) holds 
for Tj, ~ determined by (6.8) when we replace II by ii, 
and jJ. by lio 

We note that from (6.5) the operators 

i(H - jJ. - 1), HIi - Ii - 1) (6.10) 

have the same discrete spectrum n which, from (609), 
implies that they can be written as 

(6.11) 

We can also check (6.10) directly by using (6.8) and 
the fact that the quantum mechanical Casimir opera
tor14,1T is 

(6.12) 

We wish now to establish the equations giving the 
canonical transformation that takes the Hamiltonian 
H - jJ. - 1 into H - Ii - 1. From (4. 4a, b) we see that 
these equations could be written as 

H - jJ. - 1 =H - Ii - 1, 

T=1', 

(6. 13a) 

(6. 13b) 

where we used the definitions (60 1) for H, (6. 4) for H, 
(6.2) for T, and a similar one for To Equations (6.13) 
prove inconvenient when we go to the quantum picture 
and we prefer to substitute them by 

1/=1/, (6. 14a) 

(6. 14b) 

which we will show to be equivalent. In (6.14) 1/, ~ are 
defined by (6.8) where the I j (i= 1, 2, 3) are given by 
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(6.3) with x,p having the classical meaning. The defini
tion of 1), t is similar in terms of x,p and with A re
placing A. Note that here 1/,~, 1), t are understood as 
classical observables and thus the order of the function 
of x,p, x,p appearing in their definitions is irrelevant. 
Using (6.11) we see that (6. 13a) follows immediately 
from (6.14). To obtain (6. 13b) we consider the angle 
variables19,21 

i 1/ i I. . 11 + il2 I. w == - - In - = - - In - = - tin = arctan -" 
2 ~ 2 1_ 11 - il2 11 

__ 11_ 2f1 
= arcos {Ii + 12 = arccos -.lW- ")..2 

2f1 1T 
= - arcsin -.1[[2 _ ")..2 +"2' (6.15) 

which is canonically conjugate19,21 to the action variable 
J=1/~. In (6.15) we made use of the relation H= 213 and 
the classical Casimir operator relation 

(6.16) 

From (6. 14) we then arrive at equivalent equations 
for the canonical transformation of the type 

w=w, 

J=J, 

(6. 17a) 

(6. 17b) 

where w, J are given in the previous paragraph and 
w, J can be defined in a similar way in terms of the 
barred quantities. But from (6.11), (6.15) we see that 
Eqs. (6. 13) and (6. 17) are equivalent and thus we may 
use (6. 14) as the definition of the classical canonical 
transformation. 

To determine the unitary representation in quantum 
mechanics of the classical canonical transformation de
fined by (6.14), we return to Eq. (2.5) where we 
identify 

1/=i1(x,P), ~ =fz(x,p), 

1i=J;(x,P), t=h(X,P)· 

Equations (2.24) that determine 0;' Ix') then become 

1/0;' !x') = (1jt)* 0;' !x') = t*0;' !x'), 
~0;' !x') = (p)* 0;' !x') =1)*0;' !x'), 

(6. 18a) 

(6. 18b) 

where we made use of the fact that in the quantum 
mechanical picture the definitions (6.8) imply 

1/t=~, ~t=1/, Tjt=t. P=1). (6.19) 

We note also that from the definitions (6.8)"/7, 1;, 1), t 
are real differential operators, i. e., 1/ = 1/*, ~ = 1;* . 
To solve Eqs. (6. 18) we propose a development of 
0;' Ix') in terms of the complete set of eigenfunctions 
(6. 5a, b), i. e. , 

"" 
0;' ! x') = ~ a"" <Pn(x') zJ{ (X') 

n, ;;.0 
(6.20) 

where the ani! are so far undetermined coefficients. Us
ing (6.9) and similar ones for 1), t Eqs. (6. 18a, b) 
lead immediately to 

~ -.In + 1 ann <Pn+1 (x') iP~ (X') 
n,n 
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(6. 21a) 

~ ..fil ann <Pn-1 (x') ~~ (X') 
n,n 

= ~ ';n + 1 an;; <Pn{x') ~t1 (X') 
n,n 

(6. 21b) 

which imply that, when in the left-hand side of (6. 21a) 
and the right-hand side of (6. 21b) we change n by n - 1, 
n by n - 1, we obtain 

..fil an-1, n-1 =..;n" an;;' 

..fil ann =.ft[ an_1, n-1 

which give 

(n -n) ann = 0 

or ann = 0 if n *" n. Furthermore, 

so, finally, we get 

(6. 22a) 

(6. 22b) 

(6. 22c) 

(6. 22d) 

(6. 22e) 

and the aoo has to be 1, or at most a constant phase, 
for the normalization condition (4. 5c) to be satisfied. 
Thus we have 

"" 
0;' ! x') = ~ <Pn(x') iP~ (X'). (6.23) 

n·O 

We have determined the unitary representation of the 
classical canonical transformation that maps H - Il - 1 
into Ii - Ii - 1. By analogy with the discussion in Sec. 4, 
i. e., formula (4.7), we could have expected (x' Ix') to 
be given by (6.23) with some phase factor exp(iXn). The 
present discussion shows that this phase factor is Xn = 0 
if our wavefunctions are defined by (6.5)-(6.7). 

Having analyzed problems in one-dimensional config
uration spaces having continuous and discrete spectra, 
we turn our attention to problems in higher-dimensional 
configuration spaces. 

7. CANONICAL TRANSFORMATIONS RELATING 
HAMILTONIANS IN HIGHER·DIMENSIONAL 
CONFIGURATION SPACES 

So far we have discussed the representation of 
canonical transformations that take a Hamiltonian H 
in a one-dimensional configuration space into an Ii with 
the same spectrum. When we have more than one 
dimension we wish to find the canonical transforma
tion, as well as its representation in quantum mechan
iCS, that takes not only the Hamiltonian but also the 
other integrals of motion of one problem into those 
of another. Again we shall restrict ourselves to a 
specific example, in this case in two-dimensional con
figuration space, to outline as clearly as possible 
what seem to us the essential ideas required in this 
case. 

We denote by Xi,Pi and Xi' Pi (i= 1, 2) the coordinates 
and momenta in our two phase spaces, and introduce 
the notations 

(7.1) 

where x"" Po! are canonically conjugate. Furthermore, 
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we have also, in the classical picture, the polar 
variables 

1 
X,,=.f2 rexp(±i~, 

1 '. 
p" = .f2 exp('fiqJ) (Pr'f -; Prp) 

for which 

{r,p)= {qJ,Pr}= {r, qJ}= {Pr,P)= 0, 

{r,Pr}= {qJ,Prp}= 1. 

(7.2) 

(7.3) 

Similar relations hold for the barred variables XI' PI 
(i=1,2). 

In the Xl, Pi classical phase space we take now the 
Hamiltonian H and the extra integral of motion M as 
those corresponding to the free particle in the plane, 
i. e., 

H=t(pi +pD =t(p;+pVr), 

M=x1P2 -X2P1 =P IP ' 

In the barred variables we take H, M defined by 

Ii=tp;~ 

M=prp. 

(7.4a) 

(7.4b) 

(7.5a) 

(7.5b) 

Our fist question concerns the canonical conjugate vari
ables to H, M, which we denote respectively as T, N, 
as well as the T, N associated with Ii, M. They of 
course satisfy 

{H,M}={T,N}={H,N}=={M, T}=O, 

{T, H}== {LV, M}= 1 

and Similarly for the barred quantities. 

From (7. 3), (7. 5a, b) we immediately see that 

T=r/Pr==rp/p;, 

N="iP, 

(7.6) 

(7.5c) 

(7.5d) 

but the answer is not as trivial for T, N. From (7.4) we 
have 

(7.7a) 

which satisfy {H, M}= 0, as the Poisson bracket of two 
observables in terms of x,,, p" is 

(7.7b) 

As in the one-dimensional case we can still think of T 
as the time when we solve the equations of motion. As 
PIP is an integral of motion, the Hamiltonian (7. 4a) is 
actually one with a centrifugal force and, as we showed 
in Sec. 5, the T can be written as 

(7.4c) 

We immediately check, using either (7.3) or (7.7b), 
that {T, H}= 1, {T, M}= O. We must now determine N 
through the remaining equations in (7.6), i. e. , 
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( aN ON) {H,N}=- P. a +P.-a =0, x. X • 
(7.8a) 

. (ON aN aN aN ) {N,M}=z x.a- -P. ap -x_-;- +P. op =1, 
X. • uX_ • 

(7.8b) 

{T, N}== i(p.pJ.1 {x.P. + x.p., N} 

1 .1 (ON aN aN aN ) 
== a(p.pJ p+ op+ - X+ ax+ + P. ap. - X. ax. = 0, 

(7.8c) 

where in (7. 8c) we already made use of (7. 8a). From 
(7. 8b, c) the solution 

N = - i(ct lux. - {31np. - y lux. + I)lnpJ (7. 9a) 

is suggested, in which we must have 

ct+tl+y+l)==l, -ct-tl+,,+I)=O. (7.9b) 

Substituting this N in (7. 8a) we obtain furthermore 

ct(pjx.) - Y(P.lxJ =0. 

From (7.9) we then get 

ct = Y = 0, tl == I) = t 
and thus, using (7. 2), 

N== -2i In P. = qJ + arctan'&. P. rpr 

A canonical transformation that maps H, M onto 
Ii, M is then given by the equations 

H=Ii, M=M, T= T, N==N. 

(7.9c) 

(7.10) 

(7.4d) 

(7.11) 

As indicated in the previous sections, it may prove 
more convenient, for later translation to quantum 
mechanics, to use instead of the equations (7. 11) some 
functions of the observables involved. Specifically, the 
classical canonically transformation mapping H, M onto 
H, if can equally well be defined by the equations 

H=H, M=M, 2HT=2HT, exp(iN)=exp(iN) 

(7.12) 
and it will be these ones that we shall use. 

The question now is how to obtain the representation 
in quantum mechanics associated with the classical 
canonical transformation determined by Eqs. (7.12). 
Using a notation similar to that of the previous sec
tions, we shall denote this representation by 

(r' qJ' I r'"iP'). (7.13) 

The equations satisfied by (r' qJ' I r'"iP') are of the type 
(2.24), but before deriving them from (7.12), we shall 
express all the operators associated with the classical 
observables appearing there in a Hermitian form. As 
the volume element in configuration space is rdrdqJ, 
the operators Pr, P .. to be Hermitian must take the 
form 22 

.i a ~ 
Pr= -t..fi or vr, (7.13') 

(7.13"') 

The same applies to Pr,Prp canonically conjugate to 
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r, fP. The Hermitian form of the H of (70 4a) is 

1 ( 1 0 0 1 02
) 

H= '2 - r or r or -7 acp2 (7. 14a) 

as it is related to the Hamiltonian of the free particle 
in the plane. From (7.13') we have for 11 of (7. 5a) the 
Hermitian operator 

- 1 1 02 _ 
H=-2#P.fY· (7. 14b) 

We now turn our attention to the classical observables 

(7.15) 

From the form rdrdcp of the volume element, the cor
responding Hermitian operators are 

2HT=-i o~ r, (7. 16a) 

-- 0_ 
2HT=-i or r. (7. 16b) 

Finally, we look into 

exp(iN) =( ~: )1/2 = 1m, (7. 17a) 

exp(iN) = exp(ifP), (7. 17b) 

where as H=p+pj2 commutes with P., the order in 
(7. 17a) is irrelevant when we pass to quantum mechan
ics. We note that 

P . a 2... (.,) (1 a 1 a) . = - t ax~ = ..f2 exp zcp i ar' + r' acp' 

has the hermiticity property 

P.t =p+. 

This, together with (7. 17) implies, 

[exp(iN)}t = exp(- iN), 

[exp(iN)]t = exp{- iN) 

and thus N, if are already Hermitian. 

Equations (2. 24) in which we take 

11 =H, 12 =M, 13= 2HT, 14= exp(iN), 

(7.18) 

(7.19) 

(7.20a) 

(7.20b) 

(7.21) 

and similarly for the barred! .. (a = 1, 2, 3, 4), give then 

1 (1 a , a a2 a2
) ( , , 1_'_') -- --r-+- r r 2 r' ar' oar' r,2 ocp,2 cp cp 

_ 1.-1... a
2 

8('/1-' -') (7) - - '2..J? ox,2 vr r cp r, cp , .22a 

u-1/2 -1... (.,) (1 a 1 0) < 1- -
.C1. ..f2 exp zcp i or' + r' a cpt r' cp' r' cp') 

= exp( - iCj') (r' cp') (y'fP'). (7. 22d) 

From (7. 22a, b) we can write 
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(r' cp' I r'fP') 

-6 -"" 1 1"" 
- m=."" 21T 0 

x exp(- imqit)] kdk, (7.23) 

where we have only a phase factor exp[iX",(k)}, as the 
eigenfunctions of H, M are already normalized. Now 
applying Eq. (7. 22c), we have 

( r t ~ + r' -!. + 2) (r' cp' I r'fP') 
ar' arl 

·m 1'" ( a ) =~ ~1T 0 exp[iXm(k)] k ok + 2 [J",(kr') 

x exp(imcp') J1/ 2 (krl) exp(- imfP')] kdk 

·m+1 roo ax 
= -~ ~1T)0 ok'" exp[iXm(k)][J",(kyl) 

Xexp(imcp') J112(krl)exp(-imfP')]k2dk=O, (7.24) 

where as the functions in the square bracket depend 
only on kr',kr', we can replace r'a/ar' + r'a/ar' by 
kalak. The last integral comes from integration by 
parts. 

We now apply (7. 22d), remembering that23 

k 
P. i"'J",(kr') exp(imcp') = ..f2 im+1 Jm+1 (kr') exp[i(m + 1) cp'], 

(7.25) 

to obtain 

oo 1 f" I)-
"'=- 21T 0 

x exp[i(m + l)cp'] J1/2 (kr') exp(- imfP') kdk 

.. 1 f" 
::= 6 -2 exp[iX",(k)]i"'Jm(kr') 
-- 1T 0 

x exp(imcp')J1I2(kr) exp[ - i(m - 1) (p'] k dk. (7.26) 

Changing minto m + 1 in the right-hand side of (7.26), 
we obtain from this equation and (7. 24) that 

Xm+l (k) = X ",(k) , X",(k) independent of k. (7.27) 

Thus X",(k) is independent of m and k and as the repre
sentation is anyway determined only up to a phase we 
can take X",(k)::= 0 in (7.23). The integration with respect 
to k is then identical to (4. 13) except for a factor 
(r'rl )1/2 and thus we have 

(r' cp' I r'fP') 

= t i'" (r'r')·1/2 cp (rl rl) exp(im)(cp' - fP'). 
m= .... 21T ",.1/2 , 

(7.28) 

We have shown the possible procedure to be followed 
in the determination of the representations in quantum 
mechanics of canonical transformations in higher
dimensional phase space. In the last section we now 
summarize the conclusions that follow from the specific 
examples discussed here, as well as indicate possible 
procedures when the spectra of the operators, trans
formed into each other by the canonical transformations, 
are not the same. 
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8. CONCLUSIONS 

We have analyzed some examples of representations 
in quantum mechanics of nonlinear canonical trans
formations, in which difficulties number one and two 
of the Introduction (i. e., fractional or negative powers 
of the differential operators and order of the factors 
when we replace classical observables by noncommut
ing operators in the equations that determine the rep
resentation) can be overcome by dealing with suitable 
functions tot of the coordinates and momenta, instead of 
using the latter directly. In the examples studied, the 
relation between the old Xi> Pi and the new Xi' Pi was 
rather complicated, while the functions tot were simple 
enough to permit their quantization without ambiguity. 

Of course one cannot tell whether or not it will be 
possible to find such suitable combinations for an arbi
trary problem. There are, however, ways to deal with 
the problem of the quantization of arbitrary classical 
quantities in a consistent manner. One such formalism 
is that provided by the Weyl-Moyal transform. 10,16 It 
might be interesting to explore the possibility of stating 
the general problem in this language. 

Concerning difficulty number three of the Introduction, 
i. e., when the new and old observables have different 
spectra in the quantum mechanical picture, it has not 
been examined at all in the present paper. As it was 
mentioned in Sec. 2, an appropriate starting point might 
be provided by relation (2.16) for U instead of Eq. 
(2.15). NOW, however, one does not ask U to be unitary; 
it might not even have an inverse. If one is dealing with 
canonical transformations that depend on a set of pa
rameters A, then the operators U(A) will follow the 
same multiplication law as the corresponding classical 
transformations, so that they constitute a representa
tion of the latter in the usual group-theoretical sense. 
However, the absence of an inverse indicates that we 
are now dealing with a semigroup rather than with a 
group of transformations. 

The approach mentioned in the last paragraphs could 
be applied to some simple canonical transformations 
that have the feature of modifying the spectra of the 
quantum mechanical operators. Specifically, we have 
in mind the canonical transformation that maps an os
cillator of frequency k-1 (k, integer) onto another of 
frequency unity. We plan to discuss in future publica
tions these types of canonical transformations and their 
representation in quantum mechanics. 

As a final point we would like to indicate one possible 
application of the representations of nonlinear canoni
cal transformations. In some cases it may be easier to 
solve the equations that determine the representation 
of a canonical transformation connecting two Hamiltoni
ans Hand N, for example Eq. (5.14), than to find the 
eigenstates of H itself. This would then provide a pro
cedure of determining the latter. In the case of linear 
canonical tranMormations this approach was applied25 

to give a simple solution for the problem of a particle 
in a constant magnetic field. 

APPENDIX: PROOF OF EO. (5.13) 

From (5.9) and the result (5.12) we can write the 
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transformation bracket Ivc' I x') as 

Ivc' Ix') = "x'x' 10" kJ,. (kx') Jii(kx') dk. (AI) 

This integral can be found in Ref. 20, Sec. 6.574 
to be 

r(clJ. + iL)/2 + 1) (xl2 ),./2 +1/4 

2 r «j.L _ 1J.)!2) r(j.L + 1) ?2" 

( 
j.L + Ii j.L - Ii x,2 ) 

xF -. -2-+ 1, -2-+ 1;j.L+l;xrr ' 

(X' < x') (A2a) 

1vc' 1 x') = 
r«j.L + iL)/2 + 1) .(X'2 )ii/2 +1/4 

2 r«1J. - ji)!2) r(1J. + 1)· ?I 

(
1J.+1i Ii-IJ. - xl2) 

xF -2-+1'-2-+1;1J.+1;?I ' 

(X' <x'). (A2b) 

These results are valid as far as x' *" x' and they 
diverge at x' =x'. To find out the nature of the singu
larity, we use the form of the hypergeometric function 
near the value 1 of the argument (Ref. 24, Eq. 15.3.12) 
to write 

~'Ix') 

_ 1 . 7T(1i - IJ.) (1 li2 - j.L2 I 1-' , I) 
-; sm 2 x' _ x' -~ n x - x 

+ analytic function. (A3) 

The integral (AI) will also contain a 5-function 
singularity which does not appear in (A3). The behavior 
of the Bessel functions at infinity is the one responsible 
for the singularities at x' = x'. If we use the asymptotic 
expansion of the Bessel functions (Ref. 24, Eq. 9.2.5), 
the integration of the first few terms should reproduce 
the result (A3) plus a I)-function. This expansion yields 

Ivc' I x') 
2 roor (, j.L7T 7T) (-' li1i" tr) =; J 0 LCOS kx -""2 - 4: cos kx - ""2 - 4: 

4li
2 

- 1 1 (" 1J.7T 7T) . (-' ·li7T 7T) - 8x' Ii cos \kx - ""2 - 4: sm kx -""2 - 4: 

4j.L2 - 1 1 ~ -, li7T 7T). ( j.L7T 7T1~ - --, - - cos kx - - - - sm kx' - - - - dk 
8x k 2 4 2 4 

+ analytic function. 

Using the result 

1000 

exp(ikx) dk = tr 5 (x) + Pix, 

and the fact that x~ x' > 0, we can write 

100 

cos(kx' - ~) cos(kx' - m dk 

= -2
7T cos(~ - m I)(x' - x') + ~ sin(a -13) , P _, 

x -x 

+ analytic function. 

(A4) 

(A5) 

(A6) 

Concerning the second and third terms of (A4), the 
divergence at k = ° is only apparent, since there the 
series expansion, valid for large values of the argu
ment, breaks down. The divergence at x' =X' we are 
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looking for can be extracted if we integrate from, say, 
ko, to 00. We use the result 

exr:~k~) dk= i - Si(ko~) + iCi(ko~), 

exp( - ik~) dk = _ !!: + SiCk ~) + iCi(k ~) 
ik 2 ° 0 , 

(A7a) 

(A7b) 

where the cosine integral Ci and the sine integral Si are 
defined in Ref. 24, Eqs. 5.2.26, 5.2.27; they have, 
near the origin, the series expansion 

Si(z)=z+···, 
Z2 

Ci(z)=y+lnz- 4' +.", 

so that 

(AB) 

loOO eXPi~k~) dk = i In I ~ I + analytic function. (A9) 

We can therefore write 

roo 1 Jko k sin(kx' - /!) COS(kX' - f3) dk 

= i sine/! - f3) In I x' - x' I + analytic function. (A10) 

Using the results (A6) and (A10), we can then write 
(A4) as 

i..);llx') 

= cos (IJ. - /i)1T 5(x' _ x') + ! sin 1T(/i - IJ.) [2-
2 7T 2 x' - x' 

-2 2 ] 
- IJ. -, IJ. In I x' - x' I + analytic function, 

2x 
(All) 

so that result (5.13) of the text follows. 
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Higher-dimensional unifications of gravitation and gauge 
theories 
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We give a comprehensive geometric treatment of Kaluza-Klein type unifications of non-Abelian gauge 
theories with gravitation. The appearance of a cosmological term is noted. 

1. INTRODUCTION 

A five-dimensional unification of Einstein's theory of 
gravitation with that of an Abelian gauge field (e. g. , 
that of electromagnetism) has been constructed a long 
time ago by Kaluza 1 and was further developed by 
Klein. 2 Kaluza's ideas have been generalized to non
abelian gauge fields by de Witt, Trautmen, and Kerner. 3 

In view of the revived interest in unified field theories 
we wish to give here a mathematically compelling treat
ment of non-Abelian Kaluza-type theories. 

The idea here is to introduce a (4 +n)-dimensional 
(n = the dimension of the internal symmetry group) 
Riemann space. Its quotient space by the equivalence 
relation of group transformations is the usual four
dimensional space-time. The enlarged space is called 
the principal fiber bundle space in differential geometry. 
Roughly speaking, the unified field theory emerges by 
identifying 4n of the new components of the metric 
tensor with the Yang-Mills gauge potentials of the 
internal symmetry group and postulating the Lagrangian 
of the theory to be the scalar curvature denSity 
R4+n"; - g4+n of the fiber bundle space. This Lagrangian 
equals the sum of the curvature of the four-dimensional 
space-time R 4 , the Yang-Mills Lagrangian, and a 
term R G , the curvature of the group space which plays 
the role of a cosmological constant. 

2. THE GEOMETRY 

We require the geometry of the real space-time M 
combined with the internal symmetry Lie group G to be 
that of a principal fiber bundle P with M as the base 
manifold and G as the structural group. Namely we 
want4: 

D':1: (a) Every element a of G to induce a smooth 
mapping Ra of P into itself, Ra: (p, a) E P x G - pa E P 
withp(ab)=(pa)b for all a, bEG, PEP, andpa=p for 
some p implying a = e, the unit element of the group. 
In short, the group G acts smoothly to the right on P 
without fixed point. 

(b) M is the quotient space of P by the equivalence 
relation of the right multiplication R a , and the projection 
II: P- M is smooth. 

(c) P is locally trivial, that is, for any XE M there 
exists an open subset U of M containing x such that the 
set rr-l( U) defined by II(Ir-l( U» = U is isomorphic to 
UXG. By this, we mean that there exists a diffeomor
phism that takes the points p E rr-l(U) onto the pOints 

2029 Journal of Mathematical PhysiCS, Vol. 16, No. 10, October 1975 

(n(p), cfJ(p»E UXG such that cp(pa)=cp(p)a for·all 
aEG. 

Notice that the fiber over x defined as rr-1(x) is 
isomorphic to G (see Fig. 1). rr-1(x) , a smooth sub
manifold itself, will be called the fiber space over x. 

The above structure is natural, if one views the fiber 
degree of freedom rr-l(X) at each space-time point x as 
the local gauge degree of freedom at x, and the right 
multiplication Ra as a local gauge transformation corre
sponding to a E G. 

Now let uS choose a coordinate basis ~,,= a .. 
(J-I. = 1 .. ·4) for the base manifold M whose commutation 
relations are trivial: 

For a basis of G, choose a set of n linearly indepen
dent left invariant vector fields ~i (i = 4 + 1· ··4 + n) on 
G which are defined by 

'f:/aEG La~i=~j (i=4+1 .. ·4+n), 

where La~/ is the mapping of ~i induced by the mapping 
La of G onto itself by La: bE G- ab E G (i. e., the left 
multiplication). 5 

These ~ i can also be viewed as a baSis of the Lie 
algebra q of G which forms an n-dimensional vector 
space. The commutation ·relations of these vector fieldS 
are 

[~;, ~jl = tikj ~k' 

where the t~ are the structure constants of the group. 

Notice that this basis for G is not a coordinate basis 6 

and the commutation relations imply that the directional 
derivatives of two basiS vector fields do not commute 
in general. 

Also observe that each ~ j generates a one-parameter 
group of transformations cpj(t) on G with4 

G 

a€G 

CPi(t)· a= CPi(t)· La' e=La• CPj(t)· e 

IT(p)~ 

~M 

FIG. 1. The principal fiber bundle P 
with M as the base manifold and G as 
the structural group. p is a point on 
the fiber II-I (x) at xEM. 
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for every a E G, where the second equality comes from 
the left invariance of ~ /. 

The basis ~j (i=4 +1···4 +n) of G can be mapped 
in a natural way into the fiber space of the bundle since 
R 4J /(t) •• can also be viewed as a one-parameter group 
of transformations acting on the bundle. 

We will write the vector fields in the bundle induced 
by R 4J /(t).e(i=4 +1···4 +n) as ~r (i=5···4 +n), and as 
usual call them the fundamental vector fields. 4 These 
fundamental vector fields are clearly tangent to the 
fiber space and form a subspace, called the vertical 
subspace, of the tangent space T/P) to P at each pEP. 

Now, we want to give one more crucial structure, a 
connection r to our bundle. A connection r in P is a 
choice of a tangent subspace called the horizontal sub
space Hp at each PEP which satisfies4

: 

D-2: (a) The tangent space Tp at each PEP is the 
direct sum of the vertical subspace and the horizontal 
subspace Hp. 

(b)'fI aEG, PEP Hpa=RaHp. 

(c) Hp is smooth on P. 

The condition (b) implies that any two horizontal 
spaces at two different points on the same fiber should 
differ only by a gauge transformation. 

Of course, on any principal fiber bundle, such a con
nection exists. 4 

Now, given any vector 1: at xEM, we can "lift" it 
"horizontally" into the pOints P E rr-1(x) c P in the follow
ing way. Consider at each point P of the fiber rr-l(X) a 
vector E E Hp such that mE) = 1:. E so defined is ~ique4 
and is called the horizontal lift of 1: at pEP. NotIce 
that the fiber space dependence of E is given by right 
invariance. This is so because if E(p) is the horizontal 
lift of 1: at p, then Ra E(p) is the horizontal lift of 1: at 
pa. Ra E(p) is horizontal and ITCR. E(p» = II(E(p» = 1:. 
Then the uniqueness implies that Ra E(p) = E(pa), that is, 
g is invariant by Ra. 4 

In particular, the previously chosen coordinate 
basis ~ .. = 0", (iJ. = 1 ... 4) of the base mani!old M can be 
lifted horizontally into the bundle P. Let ~'" (iJ. = 1· . ·4) 
be the horizontal lift of ~",. 

As for the notation, we will continue to use i, j, k, ... 
(= 4 + 1 .. ·4 + n) to label the group degree of freedom, 
iJ., II, Q', fl, .• , (= 1···4), the space-time degree of 
freedom. For the whole bundle space degree of freedom 
we will use a, b, ••• (= 1· . ·4 +n). 

Clearly ~'" (iJ. =1·.·4) and ~j (i=4 +1···4 +n) are 
4 +n linearly independent vector fields in the bundle 
space, and their commutation relations are 

[~r, Ul=ff;;:, 
[~i, [,,]=0, (1) 

[~'" U=-~v~:' 
The first set of relations follows from the isomor-
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phism of the ~i's and ~i'S. The second set is nothing 
more than the right invariance of the L's in the fiber 
space. To understand the third set, one has only to 
realize that the horizontal component of the commutator 
of any two horizontal lift vector fields [h, E] should be 
the same as the horizontal lift of [1'/, 1;] because 

IT(H[~, EJ)=IT([~, E])= [1'/, 1;J. 
Therefore, a ... , L] has to be vertical which is just the 
third equation (1). We would like to emphasize that the 
commutator of two horizontal vector fields has a 
vertical component in general. F~v correspond to 
Yang-MillS fields, which we will soon justify. 

There is one more observation to make with the third 
commutation relations. Since the ~,,'s are defined to be 
right invariant, the commutator -F~v~: should also be 
right invariant. This immediately dictates the fiber 
space dependence of F~v' In fact, from one of the Jacobi 
identities 

[~j, [~'" Ul +[L, [L ~iJ1 +Uv, [n, L]] 

= [H, -.F'!v ~:]:= - (oj F~vl ~t - F~v!ikj ~: 
=0, 

we have 

(2) 

Here the derivative 0 r = 0 t t is meant as the directional 
derivative with respect to the vector field ~t. 

Of course, Eq. (2)'is well known once one admits that 
F~v are Yang-Mills fields; for non-Abelian groups 
these are gauge covariant. They happen to be gauge 
invariant in the Abelian case Simply because they are 
then neutral. 

3. GAUGE TRANSFORMATIONS 

So far we did not say much about ~v except that they 
are the vertical coefficients of the commutator [L, €v J 
and are gauge covariant. Now we will introduce some 
more concepts, those cooresponding to vector potentials 
in our geometry, so that one can write down ~ v in 
terms of these vector potentials and complete their 
identification with Yang-Mills fields. 

Given a connection r in P, one can define a q-valued 
I-form w on P, i.e., a "covariant" vector field which 
has values not in the space of real numbers but in the 
vector space q (as before q is the Lie algebra of G) 
in the following manner. 

Define w to be a linear mapping which maps ~t into 
~i and L into the zero in q. This w is called the con
nection form of the given connection r. 

From the definition D-2, w should satisfy4: 

D-2': (a) 'fI H w(~j)= ~i' 
(b) Y aEG Ra·w=ad(a-1)·w 

i. e., (R a • w)p(1;) = wp.(R a • 1;)=ad(a-1
). wp(1;) for any a E G 

and any vector field!; in T(P), where ad(a) is the adjoint 
representation of a E G, a real n Xn matrix representa
tion operating on the vector w(I;) E q, a real 1 x n 
column matrix. 
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The condition (a) is trivial by the definition. To 
prove (b), it is enough to verify it in the following two 
cases since w is linear in t: 

(i) If t is horizontal, so is Ra • 1:. Hence both w(Ra • /;) 
and ad(a-1) . w(t) vanish. 

(ii) If I: is fundamental, Ral:::::: ad(a-1) I: because I: is 
induced by a R",q )'e and Ra'l: is by R.R"'(t) .• Ra-l 
:::::Ra-l.",(t)'e'a:::::Ra-1",(t>a'e which will in turn induce 
ad(a-1). t. Therefore wp.(R a 1:) :::::ad(a-1). wp(t). 

Conversely, given any q-valued 1-form w which 
satisfies D-2', one can always define a connection r 
whose connection form is w. For this, one has only to 
define H p as the set of tangent vectors at p which are 
mapped into the zero element of q by w. 

We can decompose w using the basis ~i of q: 
W =w

i ~i> 

where the wi are now real valued 1-forms, i. e., 
covariant vectors in the usual sense, which satisfy 

wi(H)::::: w~ ~r::::: oL 

wi(L>=w!€~:::::o. 

(3) 

(4) 

This immediately tells us that the Wi are nothing more 
than the dual vector fields to the H. 

One can express a connection form w on P by a family 
of forms each defined in an open subset U of M in the 
following way. 7 

Let a cross section a(x) be a submanifold in P which 
is diffeomorphic to U with II(a(x» ::::: x and let a' ~<! be a 
vector in the tangent space Ta1X)(P) to P at a(x) induced 
by the mapping a:XE U-a(x)EW1(U). 

Given a connection r with the connection form w in 
P, for every cross section u(x) of the bundle we can 
define a q -valued connection form Ala) on U by 

D-3: 

A (a)(~~) =A (a)~ ~ i :::::w(a· ~,)::::: wi(a· ~")~i' 

Notice that A (a) depends upon the choise of the cross 
section a(x). A(a) can be viewed as a connection form on 
the cross section a(x) since U is diffeomorphic to a(x). 

Now we want to identify A la)~::::: wi(a' ~<!) as the vector 
potentials. To do this we will first show that they trans
form under different choice of cross section precisely 
the way vector potentials transform under gauge 
transformations. 

First, observe that any two cross sections can be 
related by a transition function a(x) E G, i. e. , 

va(x), a'(x), 3 a(x) E G 

a'(x) = CT(X) 0 a(x) =Ra1x ) a(x). 

Now, for ~<!ETx(M) let a' ~<!E Ta1x)(G) be the vector in
duced by a(x) :XE U-a(x)E G, where Tx(M) and T.1x)(G) 
are the tangent spaces of M at x and of G at a :::::a(x). 
Then CT' • ~~ is the image of (a' ~<!, a • ~<!) E T alx)(P) 
+Ta1x)(G) under the mapping (a(x), a(x»EPXG-a'(x) 
E P. From Leibniz' rule, we have 

CT' 0 ~<! ::::: (a· ~ .. ). a(x) +a(x) 0 (a • ~<!) 
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:::::Ra1xl ' (a· ~) + (a'(x)' a-1(x» . (a 0 ~.J 

:::::Ra(xl 0 (a·~) +a'(x) 0 (L.-l(xl a 0 ~u), 

where u, when acting on a vector a 0 ~" in T(G), is 
viewed as the mapping from Ta(G) to T.1X)'.(P) induced 
by u(x) : a E G - u(x) • a E P and similarly for a' acting 
on La-l(x)a • ~ ... 5 So, taking the values of w on both sides 
of the equality, we obtain 

~ i A (0'1 ~ = w(a' 0 ~,,) 

=0 ~ iwi[Ralxl . (u 0 ~u) +a'(x) 0 L a-1lxP 0 ~"l 

::::: [ad(a-1(x» 0 ~ ilwi(u 0 ~.J + w(a'(x) • La-llxla • ~,,), 

(5) 

where we have used the fact that w is linear and have 
taken into account the property (b) of D-2'. 

We now notice that w reverses the mapping a'. Indeed 
if I: is the left invariant vector field on G which is equal 
to a 0 ~" at a(x) E G, then the value of /; at the origin 
e EGis La-l1xl a 0 ~" and a' . (L a-11xla 0 ~,,) is the value of 
the fundamental vector field /;* at a'(x) E P and hence 
w(u'(L.- 1 (Xp· ~u)) :::::La-11xP' ~". By using this and the 
definition D-3, Eq. (5) can be rewritten in the form 

~iA la')~::::: [ad(a-1) . ~i loA (a~i + L a-l(xl a . ~". (5') 

Now, by observing that in the adjoint representation 

~j:::::(~j)\=f/~ 

and 

a(x)::::: etJ9jlxl, 

where eJ(x) (j::::: 4 + 1· .04 + n) are the canonical coordi
nates of a(x)E G, Eq. (5') can be written as 

t Ala')j-e-tJ9J(X)t etJ9jlX)A(ali+e-'J8J(xla (etj9jlX» 
Si ,,- Si " " • 

(5") 

We recognize this as the familiar transformation law 
of the vector potentials in gauge theory. 

Conversely, by running the argument backwards one 
can verify that for every family ofe; -valued 1-forms 
{A IO)} on U of M satisfying the condition (5"), there 
exists a unique connection which gives rise to {A lal} 
by the prescription D-3. 7 

In short, the gauge dependent vector fields A~ in 
gauge theory are nothing more than the coefficients of 
the cross section dependent connection forms on U. A 
choice of a cross section corresponds to a chOice of 
gauge in this picture. This was first pOinted out by 
Trautmen. 8 

4. CHOICE OF A METRIC 

We will now introduce a metric on the bundle space 
so that we can establish there a Riemann geometry. 

We assume that M is a metric manifold with a metric 
g"v' For G we choose the invariant metric gik9 

(6) 

We will assume G to be semisimple so that the metric 
defined above can be inverted. We call a metric 1141> on 
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the bundle P compatible with the metrics g"v and gik 
on M and G if Y.b~:~e =g"v and Yabn·nb=gik' If, in 
addition to the compatibility with the metrics g "v and 
gik, we require the metric ')lab to make the horizontal 
and vertical subspaces orthogonal to each other, then 
the metric Yab is unique. This metric is given by 

D-4: (1) ')Iab~~~e=g,,", 

(2) Y.b~~~:b=O, 

(3) Y.b~ra~:b =gik' 

Notice that this definition is independent of the choice 
of a basis. Such a metric has been previously con
structed by Kaluza 1 for the Abelian (with g55 = 1) and 
by deWitt and Kerner2 for the non-Abelian caseS 
respectively. 

We now consider the Riemann geometry of the bundle 
with the so-defined metric. 

5. CHOICE OF A BASIS 

We still did not prove that F!v can be viewed as 
Yang-Mills fields. To show this and to calculate the 
curvature of the bundle space, we now introduce a basis 
for the bundle. 

Remember that from (c) of D-1, the bundle is locally 
trivial and we can always parametrize locally P E WI(U) 
by (II(p), rp(p») =(x,a) E UXG. 

In this parametrization WI( U) is diffeomorphiC to the 
direct product space UXG, and we will write p=(x,a) 
whenever convenient. 

Given any bases of U and G, one can always introduce 
a basis in WI( U), the local direct product baSis of the 
two bases of U and G. In particular, one can take the 
local direct product basis E:" (IJ. = 1 .. ·4) and t 
(i = 5···4 +n) of the coordinate baSis ~IJ. (IJ. = 1· ··4) of 
U and the left invarient basis ~ i (i = 4 + 1 .. ·4 + n) of G 
for our basis of n -I( U). 

We clearly have "(I = ~i (i = 5· . ·4 +n). But notice that 
~,,"* L (the horizontal lift). This is so because for every 
a E G the ~u (IJ. = 1···4) form a basis of the tangent 
space of the trivial cross section aa(x) defined as the set 
of pOints p = (x, a) with fixed a, which is by itself a 
smooth submanifold. Consequently, tIL (1J.=1 .. ·4) 
should form a closed Lie algebra within themselves. 
On the other hand L in general do not by themselves 
form a closed Lie algebra: The commutator [L, t], as 
we have seen in Eq. (1), does acquire a vertical 
component. 

A connection which gives vanishing vertical compo
nent to all [g", tJ is called the flat connection, in which 
case F:v vanish identically although the cross section 
dependent vector potentials A (a)'; need not vanish. 

From their definition, the commutation relations of 
Ia now as vector fields in the bundle are 

[~;, ,[j] = ft ~k' 
[~i' ~J= [~i' 0,.1=°, (7) 
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[~IL' ~J= [a,., avJ=o. 
Now from the definition D-3 we can attach gauge poten
tials A (aa)'; to the family of trivial cross sections aa(x), 
aEG: 

(8) 

These trivial cross sections ("gauges") a.(x) form a 
family parametrized by the group element a, i. e" to 
every a E G there corresponds such a cross section. 
In other words, for every a, aa(x) determines a gauge. 

For simplicity we introduce the notation 

B~ (x, a) = A (Oa)'; = W j(~,,(x, a»). (8') 

As a consequence of Eq. (4), the horizontal lift €,. 
can be written in this local direct product basiS as 
(see Fig. 2) 

L = ~IJ. - ~iWi([IJ.) 

=0,. - tB~(:x,a) 

=DIJ.' (9) 

From the group transformation properties of the con
nection form w specified by property (b) of D-2', we 
have 

aiB~(x,a)=atB~=-f:jB~(x,a). (10) 

From Eqs. (9) and (10) we can reconfirm the commu
tation relations (1): 

[ * * ] [- - J k - k * ~i'~j = ~i'~j =fij~k=fjj~k' 

[~t, ~,,] = [~I> L - ~j B~] = [~it D" J = 0, 

[~'" U= [~ll - ~iB~, ~v - tB~l = [D", DJ 
= - F:v ~k = - F!v~:, (I') 

where now F:v are determined in terms of the potentials 
B~ by 

F~" == iJ"B~ - iJvB~ +fi~B~B~, 

the usual Yang-Mills form. 

One can also derive from Eq. (10) the gauge covari
ance of F!v: 

Thus we have proved our claim that F~v do corre
spond to Yang-Mills fields. 

From one of the Jacobi identies 

we have 

DpF!,. +DjJ,Fv~ +DvFpk" =0 

(2') 

(11) 

FIG. 2. Relation between the lo
cal direct product basis" fa and 
the horizonal lift basis ~a' 
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for every /J., I), p, and k, which are the well-known 
gauge Bianchi identies. In particular, they guarantee 
the absence of non-Abelian magnetic monopoles. 

6. THE CURVATURE OF THE BUNDLE 

Since the bundle space P has been organized into a 
(4 +n)-dimensional Riemann space, we can calculate 
the curvature of the bundle P. In the local direct prod
uct basis the metric defined by D -4 can be written 
explicitly as 

Yab= (g "+gk~j~ B~ ) (12) 
gik B " gik 

and 

where 

and 

To calculate the curvature, one has to keep in mind 
that we are using a noncoordinate basis here and must 
take into account the nonvanishing commutators. 

In the torsion free theory the formulas for the 
Christoffel coefficients r~c and the curvature tensor 
R4b/ in a noncoordinate basis ea (a = 1· . ·4 +n) with the 
metric Yab are given bylo 

r~c =iyad(abYcd + aCYbd - adYbc- c:dYce - C~iYbe) 

+ic~e, (13) 

Rabe
d = C~br~e - a.r~e +a br~e - r~r:e + r:er~, 

where oa is meant as the directional derivative a'a and 
the c~e are the coefficients of the commutation relations 
of the (noncoordinate) basis e.: 

We assume, for simplicity, the torsion-free 
Christoffel coefficients for the bundle. In the local 
direct products basis ea =~. and from Eq. (7) we deter
mil'le the commutation coefficients: 

Using Eqs. (12), (13) and (14), we find ll 

2033 

r;k ==! fj~ == rJk' 
r~k=O, 

r~jL = rL=Hfj~B~ +gklg"~B~F~jL)' 

~k=r: .. =ig"8gkzF~~, 
r~,,=i(a .. Bi +o"B~)+ig"~gikB!(F~"B~ +F~"B:) 

-r~"B~, 

r~"=r~" +tg"'B gik(B~F:,B +B~F';,B)' 
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(14) 

(15) 

where r;k and r~v are the torsion free Christoffel 
coefficients of G and M with the metrics glk and g"v, 
and 

Rik=Rik +tgijgklg""'gBF~.vF~B' 

R"k=Rk" =tgkIB! +tgklgjjg''''gMB~F~BF;6 

+ igkl g"'BVocF!s, 

R"v=R"v +tgikB~B~ +tgiJgklg"'YgBO B!B~F~BF:o 

_tg"BgikF~"'~B +tgik~B(B~ V,,.F~8 +B~V",F:B)' 

(16) 

where Rjk = tgik and R"v are the Ricci tensors of G and 
M, and Voc is the gauge and generally covariant 
derivative, e. g., 

Finally we find 

R =g""R,," + lkRik -tgikg""'gBF~vF~B . 

~RM +RG - t F2. 

7. UNIFIED ACTION INTEGRAL 

(17) 

The Einstein-Hilbert action integral/n+4 of the bundle 
space P is written as 

In+4= J J-y Rd4xdnG. (18) 

It can be formally integrated out over the group degree 
of freedom to give a four-dimensional action integral 14: 

14= VG X J J-gM(RM +RG - tp2)d4 x (19) 

(VG = the volume of the group manifold =const), which 
is postulated as the unified action. 

Notice that if the space-time manifold M is not flat, 
the constant RG plays the nontrivial role of a cosmologi
cal constant in the theory. This will be discussed in 
more detail in Sec. 9. 

8. OTHER BASES 

We have proved our statement by choosing an explicit 
basis, the local direct product basis of the bundle de
fined by Eqs. (7), which corresponds to choosing a 
specific class of gauges. Of course, one can choose 
different bases and obtain the same result. 

For example, given any arbitrary cross section (7(x) 
on U, one can span the whole rr-l( U) by the family of 
cross sections R • . (7 with every a E G. Now one can 
choose a basis for Wl( U) in the follOwing way. Choose 
~i ~ HU = 5· . ·4 + n) and define L (/J. = 1 .. ·4) at each 
point of P E rr-l(U) to be the mapping of ~ .. = a .. (p. 
= 1 .• ·4) into the tangent space Tp of P by one of 
R • • (7 : x E U - P E Wl( U). 

Clearly these ~. form a basis for the tangent spaces 
of !rl( U) and their commutation relations are 

[~j, ~Jl=fi~ ~k' 

[~j,~ .. J=O, 
[~'" U=O. 
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It is straightforward to retrace every previous step 
in this basis and to obtain the same result. We will not 
duplicate the arguments here. 

It is worthwhile mentioning that there exists yet 
another basis where the calculations become particular
ly simple. Notice that L (f.1. = 1 .. ·4) and (/ =' ~; 
(i = 5 ... 4 + n) can also be used as a basis for the bundle 
with the commutation relations (1). We will call this 
basis the horizontal lift basis. 

In this horizontal lift basis Yab can be written as 

Yab=(~\ 
\ 0 'gik) 

and (21) 

Again assuming the torsion-free Christoffel coeffi-
cients for simplicity, we find in this horizontal lift basis 

and 

and 

r
A 

ill I 
j"=2fj~=rjk' 

r~k=O' 
A i A 

r"k=r~,,=o, 

Rlk = Ri~ + tglj gkl g" 6g YO F~y F1o, 

R"k=Rk " =~gklg"'6'VOlF~B' 
RA -R !. n<>BFI Fk 

j.l.V- uv-2gik5 j"HI! vB, 

(22) 

(23) 

(24) 

Again we get the same result we had before. Notice 
that, although the components of tensor quantities do 
depend upon the choice of a basis, the curvature R 
being a scalar does not depend upon the choice of a 
basis. 

In this horizontal lift basis ~" are not the basis vec
tors of the tangent space to any cross section a(x), be
cause they do not commute under commutation. 
Potentials A~(Jli = wi(a' ~..) can be introduced as before, 
since they are defined independent of choice of a basis 
in the bundle space. The horizontal lift basis is very 
convenient for calculations. 

9. DISCUSSION 

We thus have combined gravitation with gauge theory 
in the context of a unified geometric theory in the bundle 
space with the metric D-4. 

In the process of the argumant we have assumed the 
torsion-free Christoffel connection for our bundle P and 
the space-time independent metric Yab~ja~:b =glk for 
the fiber space. In general one can relax these assump
tions and obtain different variants of the theory. 
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We now want to comment on the cosmological term 12 

RG..J-g" in the action Eq. (19). The only dimensional 
constants in the theory are the universal gravitational 
constant G and the typical length in group space (i. e. , 
essentially the magnitude of glj)' Using units 1i=c=l, 
one can therefore consider the Planck length Lp = rc 
and the length in group space L G. If LGis left arbitrary, 
then so is the cosmological term. It is not clear what 
dynamical considerations are to determine it. If LG 
were to be of the order of the Planck length, so that G 
be the only dimensional parameter, one would obtain 
a by far (-10 '20

) too large cosmological term. In that 
case, one might try a metric for G which gives a 
vanishing RG and remove the cosmological term al
together. Otherwise, one can add a countercosmological 
term "by hand. " 

We also emphasize at this point that the universal 
coupling constant g of the Yang-Mills field is also 
arbitrary in this theory. For Simplicity we have set 
g = 1 in this paper. The theory for arbitrary g is then 
obtained by systematically replacing A~(J)I and B~ by 
gA~)i and gB~. 

One might also try the Jordan-Thirry version'3 of the 
theory by letting YaDna~r= <Plk{X) become scalar 
fields. 14 

Beyond these technicalities, however, we would like 
to emphasize more the general structure of the theory: 
the combined geometry of the space-time with the in
ternal symmetry space. In this geometry, once an 
internal symmetry is given, one is led to have gauge 
fields without referring to the existence of any "matter" 
fields. 

Of course, one can always introduce matter fields in 
our geometry by hand by introducing another bundle 
space: the fiber bundle associated to the principal fiber 
bundle. 15 It would be very interesting if one could obtain 
the Fermi fields as a part of the gauge fields of some 
supersymmetry.16 

It is well known that the usual theory of gravitation 
itself can be viewed as a theory of connections of the 
bundle P with the space-time as the base manifold and 
G = 0(1,3) as the structural group. 17 In this picture the 
Christoffel coefficients r:v appear as the cross section 
dependent connection forms on Uwith G=0(1,3). This 
explains the well-known nontensorial transformation 
properties of r:v' One is led to Einstein's theory from 
the torsion-free connection, Cartan's theory 'S from the 
torsional connection. 19 Utiyama's and Kibble's work20 

can be argued more elegantly and conSistently in this 
picture. 
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By means of an "inverse scattering transform," we can exactly quantize the one-dimensional nonlinear 
SchrOdinger equation ih'l', = -(h2/2m)'I'xx- £2('1'*'1')'1' for any value of £2 = real. When £2 <0, the 
eigenvalues of the number operator, field momentum operator, and the Hamiltonian are found to be exactly 
the same as the linear case. In other words, by quantizing the exact theory, no effects corresponding to 
"renormalization" are found, and the zero point energy is independent of £2. When £2 < 0, the Hamiltonian 
is unbounded from below, and, in addition to the above spectra of eigenvalues, bound states can occur. 
Each bound state can be interpreted to be a bound state of n "excitations," moving in a coherent fashion 
and with a binding energy proportional to the cube of the number of excitations. This problem is also 
formally equivalent to the N-body problem with a delta-function interaction solved by Bethe, with which 
we shall contrast our results, and we shall conclude by making certain remarks concerning ordinary field 
quantization versus "scattering space" quantization. 

1. INTRODUCTION 

It is generally recognized that if an equation can be 
solved exactly in the classical limit (with the possible 
exception of the anharmonic OSCillator), then it can also 
be quantized exactly. With the advent of a very powerful 
transform, the "inverse scattering transform", 1 which 
was pioneered by Gardner, Green, Kruskal, and 
Miura,2 a wide class of one-dimensional nonlinear dis
persive1- 12 (and nondispersive13) evolution equations 
can now be solved exactly in the classical domain. 
Among these nonlinear equations, there are two which 
can serve as one-dimension models for quantized field 
theories. These are the "nonlinear Schrodinger equa
tion, ,,3 which is nonrelativistic, and the sine-Gordon 
equation, 5,11,12 which is relativistic. Of these two, it is 
the nonlinear Schrodinger which is a central equation, 
since it is the nonrelativistic and weak coupling limit of 
not only the nonlinear Klein-Gordon equation, 14 the 
Sine-Gordon equation, but also, of any general one
component field theory whose lowest order nonlinearity 
is a cubic term. In this respect, the nonlinear 
Schrodinger equation occupies a central position, since 
the quantization of this field will be a limit for many 
other theories. 

Although much work has gone into an analysis of these 
model field theories and their perturbation expansions, 
up until now, there was never any serious hope of ever 
being able to solve any of these models exactly. How
ever, with the advent of the "inverse scattering trans
form," not only are we able to obtain exact solutions 
in the classical limit, but it is also possible now to 
quantize the same systems exactly. The particular 
reason why the ability to quantize immediately follows 
in general upon obtaining a classical solution, is related 
to the nature of the inverse scattering transform. By 
USing this transform, one can map (nonlinearily!) a 
field into a new space, and in this new space, the evolu
tion in time of the field is described by linear, separa
ble equations. In other words, under this mapping, the 
field has been decomposed into its "normal modes," 
and each normal mode evolves in time independently of 
all other normal modes. Thus, one can immediately 
identify the action-angle variables, obtain the Hamil-
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tonian in terms of these action variables, and, except 
for possible complications due to the phase-space topo
logy, one can immediately apply the canonical quantiza
tion procedure and obtain a quantum theory. Note the 
analogy of this method with the method of quantizing 
linear field theories. For linear fields, one uses the 
Fourier transform to map (this time linearly) the field 
into a new space (" Fourier space") where the evolution 
in time of the field is also described by linear separable 
equations. Urider the Fourier transformation, the linear 
field has also been mapped into its normal modes, and 
it is these modes which are then quantized. And, in 
several other ways, the analogy between this nonlinear 
inverse scattering transform and the linear Fourier 
transform is so close, that one can also conSider the 
inverse scattering transform to be simply a "nonlinear 
Fourier transform. ,,1 

Due to the strong analogy pOinted out above, for those 
equations which can be solved exactly in the classical 
limit by an inverse scattering transform, we propose to 
quantize directly the normal modes, and not the fields. 
We do this for two reasons. First, quantization of the 
normal modes is extremely Simple since they are all 
linearly independent, and many times, it is the Simplest 
method which has the most utilitary value. Second, we 
appeal to the Bohr correspondence principle. In brief, 
if, in the limit of Ii- 0, the evolution of the appropriate 
matrix elements obeys the classical equations of mo
tion, then we have obtained a quantum theory. Thus, if 
this theory does differ from that obtained by quantizing 
the fields, and if both theories satisfy the correspon
dence principle, then they can only differ by terms of 
higher order in Ii (i. e., can differ only by their factor 
ordering and thus effects due to normal ordering). 

In Sec. 2, we shall briefly review the method for 
solving the nonlinear Schrodinger equation in the classi
cal limit by the inverse scattering transform. Here, we 
shall point out the normal modes for this field, which 
consist of "solitons,,15 and "radiation," as well as their 
equations of motion. Then, upon defining the usual num
ber density, field momentum, and field energy, we shall 
show how one determines these quantities in terms of 
the normal modes. 
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In Sec. 3, we shall proceed to quantize these normal 
modes by the usual canonical quantization procedure. 
However, due to the existence of certain nonholonomic 
constraints, care has to be used, and one must carry 
out certain classical canonical transformations on the 
action-angle variables in order to eliminate these non
holonomic constraints. But, once they are eliminated, 
one finds that the resulting normal modes are simply 
those of only either free particles or harmonic oscilla
tors and, thus, quantization becomes trivial. Upon 
quantization, the soliton can be interpreted as a bound 
state of n "excitations," whose binding energy is pro
portional to (n +t)3. Of course, these bound states have 
no analogy in the second-quantized version of the linear 
Schrodinger equation. However, the" radiation" part 
of the spectrum does have an analogy which is one-to
one. In fact, and rather surprisingly, the eigenvalues 
for the number operator, momentum operator, and the 
Hamiltonian for the "radiation" part of the spectrum is 
exactly the same as for the second-quantized linear 
Schrodinger equation! Thus, the only difference in their 
eigenvalue spectra lies in the addition of the bound 
states for the nonlinear case, when E2 > 0. 

Finally we conclude with a comparison of our results 
and those for the N-body problem with a 6-function 
interaction. 16,17 A major point here is that, in quantizing 
first in scattering space, the commutation relations 
for the fields are not uniquely specified until we have 
specified the factor ordering in the direct scattering 
transform and the inverse scattering transform. The 
manner in which it could affect our results will be 
pointed out. 

2. THE NONLINEAR SCHROOINGER EQUATION 

First, we shall briefly present the method for solving 
the one-dimensional nonlinear Schrodinger equation3 in 
the classical limit, and point out how this method effec
tively maps the field into a "nonlinear Fourier trans
form space," which is the "scattering data" of the 
Zakharov-Shabat eigenvalue problem. The scattering 
data will be defined, its time evolution will be dis
cussed, as well as how each part of the scattering data 
affects the evolution of the field in time. Finally, we 
shall define the field number, field momentum, and 
field energy, and show how one obtains these quantities 
in terms of the scattering data. 

FollOwing Zakharov-Shabat, 3 if we consider the 
eigenvalue problem 

(2.1a) 

(2.1b) 

where?; is the eigenvalue, VI and v 2 are the eigenfunc
tions, and let the time evolution of v = [~~] be given by 

iv 11 = [(fi/m)?;2 - (E2 /2ff)>J!*>J! ] v1 +Em -1/2 (i?;>J! - t>J!) v 2 , 

(2.2a) 

iV2t=-Em-1/2(i?;>J!* +t>J!;)v1 

- [(ff/m)?;2 - (E2 /2ff) >J!* >J!] v 2 , (2.2b) 

then the integrability condition for (2.1, 2) is 
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(2.3) 

where E2 is the coupling constant, assumed to be real, 
and subscripts x and t deSignate partial differentiation. 

The classical solution of the initial value problem is 
given as follOWS. 1,3 First, the scattering data S+ is 
determined at f = 0, where 

S+={[?;j' Pj];.l; p(~) (~=reaO}. 

Let >J! satisfy l 

f: 1>J!(x, t)ldx <00, 

and define cp = [:~] to be the solution of (2.1) which 
satisfies the boundary condition 

cp-[~]exp(-i!:x) as x- -00, 

for Im(?;):;. 0. Then, as x- +00, 

which defines a and b, and which also satisfies 

a(?;) at?;) + b(?;) b(?;) = 1, 

where 

a(1:)'= [a(?;*)]*, 

dj'(?;) '= [Eb(?;*)]*. 

(2.4) 

(2.5) 

(2.6a) 

(2.6b) 

(2.7) 

(2. Ba) 

(2. Bb) 

Of course, (2.7), (2. B) are in general valid off the real 
?; axis only when the >J!(x) in (2.1) is on compact sup
port. 1 The continuous spectrum ("radiation") of the 
scattering data is given by 

pW=bW/aW (~=real). (2.9) 

When to 2 <0, to is then pure imaginary, (2.1) is then 
self-adjoint when ,<2.5) is satisfied and has no bound 
states. Thus (2.9) is the only component of the scatter
ing data S •• But when E2 > 0, (2.1) can have bound states 
when (2. 5) is sufficiently large. We define this part of 
the scattering data as follows. When>J! is on compact 
support, 1 p(~) can be extended into the entire complex 
?; plane. Then the poles of p(?;) [zeros of a(?;)] in the 
upper half ?; plane correspond to the bound states of 
(2.1). Let these zeros of a(?;} be designated by [?; j];;l1 
where J is the total number of bound states, assumed 
to be finite. The residue of p(?;) at ?; = ?; j is deSignated 
by Pj' which completes the definition of this part of the 
scattering data. 

Reflecting on what has happened so far, we see that, 
by (2.1), we have mapped the field >J!(x, f) into the scat
tering data S.(?;, f}. This mapping is a nonlinear map
ping, but when the field is sufficiently small (or E is 
sufficiently small), the mapping does become essential
ly linear. From (2.1), (2.6), (2.9) one can show that 

p(~, t)=_Em 1
/

2 ff-1 r:>J!*(x, t)exp(-2i~x)dX+O(E3), 

(2.10) 

which, to lowest order in E, is simply the linear Fourier 
transform of >J!*. Of course, when the higher order 
terms are included, this mapping becomes fully non
linear, but it still can be considered as a "nonlinear 
Fourier transform." 
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This analogy with the linear Fourier transform is 
even more stronger when one considers the equations of 
motion of the scattering data. From (2.2), (2.5), (2.6), 
(2. g), one can ShOW1

,3 that the scattering data evolves 
in time according to 

ilf(1; j)t = 0 

i1f(pj)t = - (tf/2m)(2!;)2 Pj 

i1fa(l;)t=O (Iml;;o,O), 

(2.lIa) 
(j=1,2, ... ,J), 

(2. lIb) 

(2.lIc) 

(2. lId) 

Not only are these equations of motion separable linear 
equations, but note the time evolution of p(~) and Pj' 
Directly from (2.3), (2.10), we would certainly expect 
the equation of motion for p(~) to be as given by (2.l1d), 
when one takes the limit of E - 0, but (2 .11d) shows that 
the higher order terms in (2.10) are such that (2. lId) 
is satisfied for all £! Thus the equation of motion for 
p(~), in the fully nonlinear case, is exactly the same as 
one would have in the linear case (E =0) for the Fourier 
transform of >11*, and thus p(~) always evolves in time 
as a Fourier component. 

To reconstruct the "potential" >I1(x, t) at any later 
time, one proceeds as follows. First, construct the 
function1 ,3 

F(z; t) = (l/21T) f: d ~ p(~; 0) exp(i~z + 2ilim-1 ~2t) 
J 

-i): piO) exp(il;jz +2i1fm-ll;~t). (2. 12a) 
j';t 

Next, solve the linear integral equation 

K(x, y;t) -F*(x+y;t) 

+ .r duK(x,u;t) J;dwF(u +w;t)F*(w +y;t)=O, 

(2.12b) 

for K(x, y; t). Then >I1(x, t) will be given by 

>I1(x, t)=-(21f/EmI/2)K(x,x;t). (2.13) 

Note that, in this entire procedure, only linear tech
niques are required. 

Before continuing, let us briefly review the nature of 
the solution and how each piece of the scattering data 
affects it. First, we shall consider the bound state part 
of the scattering data [1; j' Pj];:!> and assume. the con
tinuous part to be absent [p( ~) = 0, ~ = real]. In this 
case, each bound state corresponds to exactly one per
manent traveling wave-form, called a "soliton. ,,15 In 
general, J-solitons are present, and closed form solu
tions are possible. 3 For the simplest case of a one
soliton solution, we have 

p(O = 0 (~= real), 

J=I, 

1;1=~I+i1)1 (1)1>0), 

Pl(O) = - 2i1)1 exp( - 21)IXO - 2i~1 xo), 

(2. 14a) 

(2.14b) 

(2.14c) 

(2.14d) 

where Xo and xo are arbitrary, real constants. Then 
from (2.12), (2.13), 
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( ) Uhh exp[-2i~b-xo)-2i1im-lt(~~-1)~)1 
>I1x,t =Em1/2' coSh{21)I(X-xo+(Ii/m)t2~1]} . 

(2. 15) 

Considering (2.15), we see that the imaginary part of 
the eigenvalue 1)1 determines the height and width of the 
soliton, the real part determines the velOCity, and Pl(O) 
determines the initial position and phase. In general, 
the same correspondences still hold for a J -soliton 
solution, with (1;1> P,) determining the above properties 
of the first soliton, etc. Note the singular dependence 
of >11 on the coupling constant E2. Expansion in a power 
series of ~ would never allow one to find this or any 
other soliton state. 

When the continuous spectrum is present, closed 
form solutions are not possible, but when no solitons 
are present (J = 0), the Neumann series solution of 
(2.12) is absolutely convergent if E2 <0 and is also 
absolutely convergent when E2 > 0 if I p(~) I < 1. I To study 
the nature of this type of a solution, we take P to be 
very small, and consider only the lowest order term. 
Then to lowest order 

>I1(x, t) "" (1/211) f: 2d H( -ii/Em'l 2) p*(~; 0) I 
Xexp(- 2i~x - 2ilim- I e f), (2.16) 

where the quantity inside the bracket is essentially the 
Fourier transform of >I1(x, 0). Considering (2.16), we 
see that the solution for the continuous part of the 
spectrum, in the limit of E - 0, develops in time like the 
solution for the linear problem (€ = 0), in that it will 
slowly disperse and decay away. For the fully nonlinear 
case, we can still expect the same to occur, except for 
possible nonlinear decaying oscillations. 18 Due to its 
property of usually occurring as decaying oscillations 
traveling away from a disturbance, this part of the 
spectrum (the continuous part) is often referred to as 
"radiation." When both parts of the spectrum are pres
ent, solitons and radiation, then, for large times, the 
solution is expected to asymptotically approach a state 
of separated permanent traveling waveforms (solitons) 
traveling in a sea of decaying radiation. 

As one can see by comparing (2.3) with (2.10), map
ping >11 into the scattering data S + has transformed the 
original nonlinear equation into a set of linear equations 
whose solution is trivial. One can show that this map
ping (2. 1) is in fact a canonical transformation 19-21 just 
as are the similar maps for the KdV equation22 and the 
Sine-Gordon equation. 12 Furthermore, it is clear from 
(2.10) that this map does allow the Hamiltonian-Jacobi 
functional differential equation to be completely sepa
rated, and thereby allows one to determine the action
angle variables. 

Although there are several ways one may proceed to 
determine the Hamiltonian in terms of the scattering 
data, 12,19-22 one of the more direct ways is to utilize the 
fact that all of these systems has an infinity of poly
nomial conserved quantities. 1.3,20 This infinity of con
served quantities follows from (2. llc) and the fact that 
a(l;) is an analytic function of I; in the upper half I; plane. 
Thus, if we expand a(l;) in an asymptotic series of (;-1 

about I I; I = 00 in the upper half plane, every coefficient 
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must give us a conserved quantity. Now, from the 
relation1 

J ( ) 1 f~ d Ina(?;)=tt ln ;:;f -21Ti _~ E,-\ In[l+p(OpWl, 

(2.17a) 

for Im(?;) >0, where the sum is absent if €2 <0 (since 
J = 0), and p is defined by 

(2.17b) 

we can obtain this expansion in terms of the scattering 
data S •. 

To obtain it in terms of the field, we return to (2. 1) 
and (2.6). Then 

Ina(?;) = lim lnw(?;, x), 
x~~ 

where 

w(?;, X)=¢l(?;' x)exp(i?;x), 

and w is given as the solution of 

w(?;, x)=l + i: M(?;,x,y)w(?;,y)dy, 

and 

(2.18a) 

(2. 18b) 

(2.18c) 

M(?;, x, y) = - (€2m/tf)'l1* (y) r exp[2i?;(z - y) l'l1(z)dz. , 
(2.18d) 

The Neumann series solution of (2.18c) is absolutely 
convergent in the upper half ?; plane. 1.3 Expanding (2.17) 
and (2. 18a) in an asymptotic series in ?;-1 for?; in the 
upper half ~ plane, upon comparing the two expansions, 
will give us the infinity of conservation laws. 

From (2.18), we have 

lna(~) Q< - i 2~1f (N - 2:li p + 2?;n:tf C + O(~-3»), 
(2. 19) 

where 

N-= i: 'l1*'l1dx, (2.20a) 

(2.20b) 

(2.20c) 

Upon also expanding (2.17) and comparing with (2.19), 
we obtain 

21F (. J 1 f~ ) N=-2 ir;(~;-~')+-2 dE,ln(l +pp) , (2.21a) 
mE J=l 1T _00 

(2.21c) 

Thus by expanding Ina(?;), we can directly obtain the 
field number N, the field momentum p, and the field 
energy C, in terms of the scattering data. As we can 
see from (2.21), these field variables (as well as the 
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higher ones) only depend on [?; ,1:01 and pp, which are 
the constants of the motion. 

Before proceeding with quantization, let us stop for a 
moment and consider (2.20c) and (2.21c). By standard 
techniques, it is easy to show that (2. 20c) is also the 
Hamiltonian for (2.3),23 if we interpret the conjugate 
momentum of 'l1 (II) to be 

n = ili'l1*. (2.22) 

The process of mapping the field (and its conjugate 
momentum ili'l1*) into the scattering data S. is a canoni
cal map. Therefore, (2. 21c) is the Hamiltonian for the 
scattering data S., but which variables in the scattering 
data are the P's and which are the q'S? To answer thiS, 
we must look at the simplicial form for this system, 19,20 
which is 

f~ a'l1 /\andx=l~ dE, a (argb) /\aC~m In(l +pp») 

(2. 23) 

where 

b,=p, aa I 
a?; ~'~j (j=1,2, ... ,J). 

(2.24a) 

?;,=E,j+i71, (71,>0) (2.24b) 

From (2.23), one can immediately read off the (p, q) 
variables, with the q's to the left of the "wedge" and the 
P's to the right. 

3. QUANTIZATION 

USing the ideas already laid out in the first two sec
tions, we shall now identify our (p, q) conjugate varia
bles for the scattering data. Upon making the simplest 
possible identifications, we first note that the system is 
constrained by certain natural nonholonomic constraints, 
which are constraints on the phase-space topology of 
the system. If we knew how to quantize in the presence 
of such constraints, there would be no problems, but 
it has already been shown24 that the presence of such 
constraints can lead to inconsistent results upon quanti
zation. In order to avoid this problem, we will first 
remain in the claSSical theory until we can find a classi
cal canonical transformation which will allow these 
nonholonomic constraints to be reduced to trivial con~ 
straints. If this can be done (and for this field it can be 
done), then we may ignore these constraints and pro
ceed with quantization. 

When we have finally reduced all nonholonomic con
straints to trivial constraints by classical canonical 
transformations, we then find that the Hamiltonian be
comes a simple nonlinear function of harmonic oscilla
tor and free particle Hamiltonians. Quantization there
fore becomes almost trivial, and we can immediately 
give the eigenvalues of the number operator, field 
momentum operator, and the Hamiltonian. It is indeed 
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remarkable that these eigenvalues for the continuous 
part of the spectrum are identically the same as for the 
linear case (e = 0). In other words, no effects requiring 
renormalization are found, and the zero point energy 
is independent of e! When e2 > 0, a discrete spectrum 
can also be present, and when it is, bound states occur, 
since the Hamiltonian is unbounded from below. Each 
bound state can be interpreted as being a bound state of 
n "excitations" moving as a coherent unit with a binding 
energy proportional to the cube of the number of 
excitations. 

We shall now identify the (p,q) variables. Define Tfj 

and ~j by (2. 24b) and first take the P's [A j , Pj' pWJ to 
be [see (2.23)J 

(j=1,2, ... , J), 
(3.1a) 

(3.1b) 

(3.1c) 

Then from (2.23) the conjugate q's [B j , qj' q(~)l are 

B,=arg(b) (3.2a) 
U=1,2, ... ,J), 

q j = + (ff /me 2
) In(bjb;> (3.2b) 

qW=arg(b(~» (~=real). (3.2c) 

Before quantizing, we must look carefully at the topo
logy of our phase space. 24 Since the Hamiltonian is 
separable, we need only consider the subspaces o! a 
conjugate pair at a time. For the (Ai' B,) phase space, 
in order to be physical, we must demand 

Aj>O (j=1,2, ... ,J) (3.3) 

since all eigenvalues must lie in the upper half 1; plane. 
This is a nonholonomic constraint and cannot be ignored. 
Also, we must demand B j to be modulo 211', 

(3.4) 

which follows from (3. 3a). We do not know how to quan
tize directly when a phase space has this topology. How
ever, in this case, it turns out that we can perform a 
canonical transformation on this phase space and map 
it, one-to-one, onto the Cartesian phase space of the 
harmonic oscillator. This transformation is 

(3.5a) 

(3.5b) 

and in the (Pj,Qj) phase space, the constraints (3.3), 
(3.4) are automatically and trivially satisfied. 

Turning next to the (Pj,qj) phase space, we see that 
it is already Cartesian, since there are no constraints 
on the real part of the eigenvalue or on the magnitude 
of Pj' Meanwhile, the topology of the phase space of 
(p(~), q(~» is exactly the same as that of (A j , B), so 
that the same considerations apply. 

Collecting everything together, we take our final 
(p, q) variables to be 

arg(P j + iQj) = arg(b j)' (3. 6a) 
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bW = (PW + iQW> R(P2W + Q2( ~», 

where the function R(Z) is defined by 

R(Z) 0= [Z-lexp(~;e2 Z)_Z- ll/2. 
Then, N, p, and C are given by 

(3.6c) 

(3.6d) 

(3.6e) 

(3.7) 

N= E 2~ (P7 +Q~) + 1~~ d~ 2~ [p2(~) +Q
2Wl, (3. Ba) 

p= jt 2~ (P~ +Q;)P j 

+ f~ d~(-2Jf~)2~ [p 2W +Q2(~)], (3. Bb) 

J 1 P~ me4 
J ( 1 )3 

C = t12Jf (P~ + Q;) 2~ - 24Jf2 f.t 21i (P; + Q;) 

(3. Bc) 

Once we have the classical theory in the above form, it 
is easy to see how to interpret the various parts of the 
scattering data, as well as to see what the effects of 
quantization will be, since now we are only quantizing 
either independent harmonic oscillators or free parti
cles. Upon quantization, we have 

(1/2Jf)(P~ +Q;) - Aj A j +t, (3.9a) 

(3.9b) 

and A and At are the usual destruction and creation 
operators, which satisfy 

(3.9c) 

Defining the number operators by 

Nj=AjA j , (3.10a) 

NW=AtWAW, (3.10b) 

then the operator form of (3. B) is simply 
J 

Nop= tt (N j +t) + f: d~ [N(O +t], (3.lIa) 

J 

POP = k (Nj +t)(p j}oP + 1.: d UN(~) +t ]pW, (3. llb) 

(3. lIe) 

where 

(3.12) 

We see that (3.11) differs from the second quantized 
form of the linear Schrodinger equation (without a 
potential)22 only by the soliton terms. Upon quantization, 
each soliton is comprised of nj "excitations", where nj 
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is an eigenvalue of N j (n j =O,1,2, .•• ) and these nj 
excitations form a bound state which moves at a momen
tum equal to an eigenvalue of {Pj)oP (-oo <Pi <+(0) for 
a pure state. The energy of this bound state is the sum 
of a kinetic term and a "binding energy, " which is pro
portional to {n j +~)3 for a pure state. Thus the more 
excitations in a soliton, the more strongly they are 
bound. Note the conjugate variables and how they are 
paired. If we have an eigenstate of Nj' then, by the 
uncertainty principle, we know the amplitude and width 
of the soliton [see Eq. (2 .15)], but we have no knowledge 
of the phase of the soliton. Similarly, if we know the 
momentum P j of the sOliton, we have no knowledge of 
the central position of the soliton. 

So far, we have ignored the problem of factor order
ing, and, based on the results for the N body problem 
with a a-function interaction16

,17 and the appropriate 
limit of the quantized sine-Gordon equation, 12,25 it is 
known that the energy eigenvalues of the bound states 
should be n~ - nj and not {n j + ~)3. Returning to (2. 20c), 
one can see that the term - nj would come from the 
normal ordering of the nonlinear term in (2. 20c), which 
would add a term proportional to (2. 20a) to the 
Hamiltonian. But, at the present state, this would leave 
its coefficient in (3. Bc) completely arbitrary. How may 
this be resolved? Consider the classical (or semiclassi
cal) limit. By the inverse scattering transform (2.12), 
(2.13), we have a map from the classical limit of the 
operators A; andA(~) to the fields >Ir(x) and >Ir*(x). This 
map is nonlinear, and therefore, as we go to the full 
quantum domain, we must specify a factor ordering in 
order to have a unique map from the quantum operators 
A j andA(~) to the operators >Ir(x) and >Irt(x). Further
more, since the commutation relation between >Ir and >Irt 
must be 

(3.13) 

to all orders of If (by the correspondence principle, it 
is satisfied only to lowest order), we hypothesize that 
there exists a factor ordering for the inverse scattering 
transform which, due to (3. 9c), (3.9d), will give (3.13). 
This condition essentially would uniquely specify the 
operator transform from scattering space to the field 
space, and therefore would uniquely determine the 
quantum form of (3. Bc) which would correspond to the 
normal-ordered form of (2. 20c). 
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The radial distribution function (RDF) of a fluid is considered for the case of the square-well potential. If 
the RDF is expanded in powers of the depth of the square-well, E, the first two tenns are, in most 
applications, the most important. The Percus-Yevick (PY) integral equation for the RDF is examined and 
the resulting integral equations for these tenns obtained. The first set of equations are just the PY 
equations for hard spheres which have been solved analytically. In this paper, the remaining equations for 
the tenns of order {3E, where (3 = 1/ kB T, are solved analytically and the results examined. We have 
speculated in the past that the PY theory could be used to obtain estimates of higher-order tenns in a 
perturbation expansion of the RDF. We find that the PY theory cannot give reliable estimates of these 
higher-order tenns for the square-well potential at high densities. 

INTRODUCTION 

In the statistical theory of fluids, a function of great 
interest is the radial distribution junction (RDF), de
fined by 

g(r12) = 0l ~ eXPt !3<I» dr3' .. dr N , 
exp - !3<I» dr 1 ..• dr N 

(1) 

where r/ j = I rj - rj I and r/ is the pOSition of the ith 
molecule. In addition, V and <I> are, respectively, the 
volume and potential energy of the system of N 
molecules and !3 = l/k B T, where k B is Boltzmann's con
stant and T is the temperature. 

Not only does g(r) give insight into the structure of 
the flUid, but the thermodynamic properties may be cal
culated from g(r) by means of three distinct methods. 
First, there is the compressibility equation, 

kBT(-n)T =1+41Tp i~~h(r)dr, (2) 

where h(r) = g(r) - 1 is the total correlation junction, 
p is the pressure, and p = N/V, which can also be 
written in the completely equivalent form 

k:T(~:t = 1- 41TP i~ r 2
c(r) dr, (3) 

where c(r) is the direct correlation junction which is de
fined by the Ornstein- Zernike equation: 

h(12) =c(12) +p J h(13)c(23) dr3, 

where h(12) =h(rd, etc. 

(4) 

The other two equations linking g(r) and thermody
namics depend on the form of <I>. If the potential energy 
is made up of additive contributions of pairs of molec-
ules, i. e. , 

N 

<I>(rl,· .. ,rN) = /ij,1 u(r/ j ), (5) 

the pressure equation has the form 

pV 1 21Tn i~ 3du ( )d --= -~ r-gr r 
NkBT 3kBT ° dr ' 

(6) 
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and the energy equation becomes 

U=%NkBT+21TNp jo~ r2u(r)g(r) dr. (7) 

In this paper we consider the square-well potential 

u(r)=L:: 

t 0, 

O<r<a, 

a<r<J.1.a, 

r> J.1.a. 

Throughout this paper, we employ the usual choice, 
J.1. = %. In the spec ial case E = 0, or equivalently T = 00, 

this potential becomes the hard-square potential. For 
the particular case of (8), the pressure equation may 
be Simplified: 

(8) 

p V /NkT = 1 + 41)[xy(a) + J.1. 3(1 - x)y(J.1.a)], (9) 

where 1) = 1Tpa3/6 and x = exp(!3E). The function y(r), which 
is continuous even though g(r) and u(r) are not, is re
lated to g(r) by 

g(r)=e(r)y(r), (10) 

where 

e (r) = exp[ - i3U(r)]. (11) 

The energy equation may be integrated to obtain the 
free energy A. For the particular case of the square
well potential 

A fB' U --= -d(!3E) 
NkBT 0 NE 

A fB' fIL = Nko T +21TP d(!3E) r2g(r) dr, 
B 0 1 

(12) 

where Ao is the hard-sphere free energy. This quantity 
may be calculated from the expression of Carnahan and 
Starling1: 

Ao 3 ~ 
NkBT =2lnX -1+lnp+1)(I_1))2' (13) 

where A 2 = h2/21TmkB T, m is the molecular mass and h is 
Planck's constant. 

One of the most useful prescriptions for calculating 
g(r) is that of Percus and Yevick2 (PY). In the PY theory 
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c(r) = [e(r) - IJy(r). (14) 

Elimination of c(r) between (4) and (14) yields the PY 
integral equation: 

y(12)=1 +pf [e(13)y(13)-1][e(23)-I]y(23) dra. (15) 

We note that in the PY theory c(r) = 0 for r> /lC1. 

In this paper it is convenient to use, instead of (15), 
the completely equivalent integral equations of 
Baxters: 

1. "0 
rc(r) = - Q'(r) + 27rp F Q'(t)Q(t - r) dt (16) 

and 

rh(r) = - Q'(r) + 27rp fo "a (r - t)h( I r - t I )Q(t) dt, (17) 

where Q' (r) is the derivative of Q(r) and Q(r) = 0 for 
r> /lC1. Thus, 

Q(r)=- fr"oQ'(t)dt. (18) 

The function Q(r) is continuous. Note, however, that 
Q'(r) is not continuous. Baxter has also shown that the 
compressibility equation, Eqs. (2) or (3), is equivalent 
to 

_l_(OP) = [Q(0)]2, 
k8 T op T 

where 

Q(k) = 1- 27rp fo "a exp(ikr)Q(r) dr. 

(19) 

(20) 

For an exact g(r), Eqs. (2), (6), and (7) are equiva
lent. However, for an approximate theory, such as the 
PY theory, each of these equations yields somewhat dif
ferent thermodynamic properties. In most cases, in
cluding the present one, (7) yields the most reliable 
results. 

PERTURBATION EXPANSION 

There is now a large body of evidence4 which indicates 
that the properties of a fluid are dominated by the re
pulsive part of the potential. This idea actually dates 
back to van der Waals, 5 who assumed that the structure 
of a fluid is determined primarily by the repulsive 
forces and that the effect of the attractive forces is to 
provide a uniform background potential in which the 
molecules move. 

This suggests that we might solve (16) and (17) by 
using the perturbation expansions 

y(r)=yo(r)+)3£Yt(r)+.·. , 

~
- yo(r) - )3£Yt (r), 0 < r < 0', 

c(r) = )3€Yo(r), a < r < /l(], 

0, r> /la, 

j 
0, O<r<u, 

g(r) = Yo(r) + t3£[Yo(r) +Yt(r)], (] <r < /l(], 

Yo(r)+)3EJ1(r), r>/lC1, 

and 

j
Qo(r) +B£Qt (r), 0 < r < u, 

Q(r) = )3€Ql (r), IY < r < /lC1, 

0, r>/lu. 
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(21) 

(22) 

(23) 

(24) 

Thus, our objective is to obtain Qo(r) for O<r<a, 
Qj(r) for 0 < r < /lu, and yo(r) and Yt (r) for r> O. To ob
tain the thermodynamic properties, it is only necessary, 
provided that Q(r) is known, to know y(r) for U ~r~ /lIY. 
Analytic expressions for Qo (r) and for Yo (r) for 0 ~ r 
~ 50' have been obtained previously. 3,6-9 In this paper 
we obtain analytic expressions for Qj(r) and for Yl(r) 
for 0 ~ r ~ 2u. Some of these results have been reported 
earlier. to 

ZEROTH-ORDER RESULTS 

If we let s =r/a, we have from (16) and (17) 

- syo(s) = - Qo(s) + 12." fs 
1 

QHt)Qo(t - s) dt, (25) 

- s = - Q6 (s) - 12." fo j (s - t)Qo (t) dt (26) 

for 0 ~ s ~ 1 and 

sYo(s) - s = 12." fo s-l (s - t)yo(s - t)Qo(t) dt 

- 127] 101 
(s - t)Qo(t) dt (27) 

for 1 ~ s ~ 2, In these equations, factors of u-1 and u-2 

have been absorbed into the Qo(s) and Qo(s), 
respectively. 

Equations (25) and (26) have been solved by BaxterS 
who observed that (26) requires that 

Qf,(s) =as + b 

and thus 

Qo(s) = ia(s2 - 1) + b(s -1). 

Substitution of (28) and (29) into (26) yields 

a-= (1 + 2.,,)/(1- 11)2 

and 

b = - 3.,,/2(1 - 17)2. 

Substitution of these results into (25) yields 

yo(s) = a2 - 61](a + b)2s + i1Ja2s3
• 

(28) 

(29) 

(30) 

(31) 

(32) 

These results have been obtained earlier by Wertheim6 

and Thiele 7 by a direct solution of (15). 

With these results, we may obtain the PY hard-sphere 
thermodynamic properties. From the pressure equation, 
we obtain 

Po V/NkT = (1 + 2." + 3.,,2)/(1 -."j2 

and, from the compressibility equation, we obtain 

Po V/NkT = (1 + 17 +1]2)/(1- 11)3. 

(33) 

(34) 

The energy equation result is obtained by differentiating 
Ao in (12) and (13). This quantity is actually a constant 
of integration and so is not really a consequence of (7). 
In any case, the result is 

(35) 

We can solve (27) by letting Its) -= syo(s) and changing 
variables in the first integral on the rhs. Thus, 

Its) = s+ 12." f//(t)Qo(s - t) dt - 12." f/ (s - t)Qo(t) dt. 

(36) 

We may solve (36) by differentiating three times to ob
tain the linear, homogeneous third-order ordinary dif-
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PY theory 
for the 
square-well 
potential with 
Il=t 

[(/)= Im(s) + ~ /,,(s) + ~ /,(s) _ 121](1 +21]) I(s) 
1 - 1] (1 - 1])2 (1 - 1])2 

= 0, (37) 

where L denotes the third-order linear differential 
operator. 

If we seek a solution of the form 

I(s) =A exp(ms) , (38) 

we find that 
S(m) =m3 + ~m2 + ~m _ 121](1 +21]) =0 (39) 

1-1) (1-1) (1-1)2' 

Thus, for 1 "" s "" 2, 
2 

sYo(S) := 6 A, exp(m,s), 
1=0 

(40) 
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FIG. 2. Yo(s) 
and Yl (5) for 
the square
well potential 
with 11:= i. 
The points 
are MC 
values11 ,13 

and the solid 
and broken 
curves give 
the PYand 
Grundke
Henderson12 
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FIG. 3. go(s) 
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well potential 
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and the curve 
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results. 

where the m , are the three roots of (39). Analytical ex
pressions for the m , are available. 6 

The A, are determined from the boundary conditions 

/(1) = 1- 121) fo 1 
Qo(t) dt + 121) f/ tQo(t) dt, (41) 

/,(1):= 1 + 121]Qo(0)/(1) - 121) fol Qo(t) dt, (42) 

and 

1"(1):= 121]Qo(0)/,(1) + 121]Qo(0)/(1). (43) 

Equations (41)-(43) are equivalent to the requirement 
that yo(r), yo(r), and Yo'(r) are continuous at r=G. 

Wertheim,6 Chen, Henderson, and Davison, 8 and 
Smith and Henderson9 have obtained these results earli-

5 

-5 

-10 

-15 

p' = 0.7 

FIG. 4. cots) 
and cl (s) for 
PY theory for 
the square
well potential 
with Il=t 
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o 2 
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er by a different method. Smith and Henderson have 
obtained Yo (r) analytically for 0 "" r "" 5a. 

The functions Qo(s), Yo(s), go(s), and co(s) are plotted 
in Figs. 1-4 for the relatively high density p* =p(]3 
= O. 7. These results are typical of those obtained at 
other densities. Monte Carlo (MC) calculations, based 
on exact formulas for go(s), and thus Yo(s) for s~ 1, are 
available. 11 In addition, there is the parametrization of 
Yo(s) for S"" 1 of Grundke and Henderson12 with which the 
py Yo(s) may be compared. Both the Monte Carlo and 
Grundke-Henderson results are plotted in Figs. 2 and 
3. The PY go(r) is quite good. As is well known, the 
most significant errors in the PY go(s) are the slightly 
low values of go(s) for s;;; 1. On the other hand, the 
PY Yo(s) is seriously in error for s < 1. 

RESULTS FOR Q, (f) 

If we substitute (21)- (24) into (16) and (17), we 
obtain 

- SYI (s) = - Qt(s) + 121] f QO(t)Ql(t - s) dt 

j S+1 
+121] S Qo(t-s)Qj(t)dt 

and 

Qj(s) = - 121] 103
/

2 
(s - t)QI (t) dt 

+ 121] 1s~{2 (s - t)yo(t - S)QI (t) dt 

for 0"" s "" t, 
- SYI (s) = - Qj(s) + 121] 11 QO(t)Ql (t - s) dt 

S 

1
3/2 

+121] Qo(t-s)Qj(t)dt 
S 

and 

Qt(s) = -121] 103
/
2 

(s - t)QI(t)dt 

for t"" s "" 1, and 

and 

sYo(s) + sYI (s) = - Qj(s) -121] 103/2 
(s - t)QI (t) dt 

(44) 

(45) 

(46) 

(47) 

1. s-I 
+ 121] 0 (s - t)[ Yo(s - t) + YI (s - t) ]Qo(t) dt 

+ 121] 10 s-I (s - t)yo(s - t)QI (t) dt (49) 

for 1 "" s "" i. Note that we are explicitly using the value 
f.J.=i. 

'Phus, to obtain QI(r), we must solve these coupled 
integro-differential equations. The easiest equation with 
which to start is (48). If we setf(s) = Qj(s) andg(s) 
= sYo(s), this equation becomes 

1. 
3/2 

f(s)=-g(s)+121] 0 Qo(t-s)f(t)dt. (50) 

We solve (48) by differentiating three times to obtain 

L'U]=f"'(s)-..i!L J"(S)+~f'(s)+ 121)(1+21]) f(s) 
1 - 17 (1 - 17)2 (1 - 17)2 

=g'''(s). (51) 

Proceeding as before, we attempt a solution of the 
homogeneous portion of (51) which has the form 

f(s) =B exp(ms). 

Thus, 
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(52) 

3 ..i!L 2 ~ 121](1 + 21]) 
D(m)=m - I-17 m + (1-1])2 m+ (1-1])2 =0. 

We note that 

D(- m) = - SCm). 

Thus, the solution to the homogeneous equation is 
2 

f(s) =6 BI exp(- mls), 
1=0 

(53) 

(54) 

(55) 

where the ml are the same as those in Eq. (40). Includ
ing the particular integral gives, for 1 "" s "" 1, 

2 

Qj(s) =6 [BI exp(- mls) + CI exp(mls)], (56) 
1=0 

where 

C I = - AlmVD(ml)' (57) 

The BI are determined from the boundary conditions 

f(1) = - g(1), (58) 

f'(i) = - g '(1) - 1217Qo(0)f(t), (59) 

and 

J"(i) = - g n(t) - 121]Qo(0)f'(t)+ 1217Qo(0)f(t). (60) 

Integrating (56) yields, for 1 "" s "" 1, 
2 . 

Q1 (s) = - 6 [BI exp(- mls) - CI exp(mls)]/ml + C, (61) 
100 

where C is determined from the boundary condition 

QI(1)=0. (62) 

Next we consider Eqs. (45) and (47). From these we 
obtain 

for 0 "" s "" 1, where 

A = 10312 
QI (t) dt, 

B = 103/2 
tQI(t)dt, 

and 

f 
3/2 

1j!(s) = s+1 (t- s)yo(t- s)QI(t)dt. 

Substituting (40) and (61) into (66) gives 
2 2 

1j!(s) = a + 6 bl exp(- mls) + S 6 C I exp(- mls) 
1=0 1=0 

2 

+0 d l exp(mls) 
1=0 

for 0 "" s "" t, and 

1/J(s) = 0 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

for t "" s "" 1. We note that because of (68), Qj(s) is con
tinuous at s = t. In (67) 

(69) 
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(70) 

(71) 

and 

(72) 

Hence, integrating (63) gives 

Ql (s) = 1217[- -tIAs2 +Bs +D - <p(s)] (73) 

for 0 < s < t where D is a constant of integration, and 

¢(s)=as-t(-EL - -3)exp (-m,s) 
1=0 m, m, 

2 c 2 d 
- s 6 -1. exp(- m,s) +6 -1. exp(m,s) (74) 

'=0 m, '=0 m, 

and 

(75) 

for -tI < S < 1, where E is a constant of integration. We 
note that Qo(s) is also of the form of (75). It is easy to 
prove that all Qn(s), and thus Q(s), are quadratic func
tions of s for )J. - 1 '" s '" 1. 

We determine D and E by requiring that Q1 (s) be con
tinuous at s = -tI and s = 1 and we determine A and B from 
(64) and (65). The function Ql(s) is now known. 

We have plotted Ql (s) for p* = 0.7 in Fig. 1. As al
ready pointed out, there is no discontinuity in the slope 
of Q1 (s) at s = -tI. Although it is not seen in Fig. 1, Q1 (s) 
has a small discontinuity in slope at s = 1. 

RESULTS FOR YI (s) 

Now let us consider Eq. (49). Let us setj(s)=sYl(s) 

andg(s)=syo(s). Thus, forl"'s"'~, 
( 3/2 

j(s) = - g(s) - Qj(s) - 1217 Jo (s - t)Ql (t) dt 

+ 1217 J1 S [get) + jet) ]Qo (s - t) dt 

+ 1217 J/ g(t)Q1 (s - t) dt. (76) 

We may solve (76) by differentiating three times to 
obtain 

L [j 1 = - Q1V(s) + 1217[ Q1 (O)g "(s) + Qf (O)g , (s) + Qj'(O)g(s) 

+ 1217 J/ g(t)Q1"(s - t) dt, (77) 

where the linear operator L is given by (37). In obtain
ing (77) we have used the fact that L [g] = O. 

Hence 

L[jl = pes), 

where 
2 2 

pes) =6 x, exp(- m,s) +6 Y, exp(m,s) +R(s), 
'=0 1=0 

X, =m~B" 

Y, = 1217[Q1 (O)m; + QUO)m, + QI'(O)]A, - mtC" 

2046 J. Math. Phys., Vol. 16, No. 10, October 1975 

(78) 

(79) 

(80) 

(81) 

and 

R(s) = 1217 J/ g(t)Q{'(s - t) dt. 

Now for 0 '" t '" ~ 
2 2 

Qj"(t) =6 p, exp(- m,t) + s 6 q, exp(- m,t) 
'=0 1=0 

2 

+6 r, exp(m,t) , 
'=0 

where 

and 

p, = 1217b,m; - 2417c,m" 

q, = - 1217c,mL 

r, = - 1217d,m~. 

Substitution of (40) and (83) into (82) gives 
2 2 

(82) 

(83) 

(84) 

(85) 

(86) 

pes) =6 (P, + sQ,) exp(- m,s) +6 (R, + sT,) exp(m,s), 
'=0 '=0 

(87) 

where 

2 Ak 
P,=x,+1217(q,-P,)6 ( ) exp(m,+mk) 

k=O m, +mk 

2 A 
- 1217q, '0 ( k )2 exp(m, + m k), (88) 

k=O m,+mk 

2 Ak 
Q, = - 1217Q, '0 ( ) exp(m, + m k), (89) 

k=O m, +mk 
2 

R, = Y, + 1217A, '0 ( Pk ) + ( qk )2) 
k=O m,+mk m,+mk 

2 rk 2 Ak 
+1217A 6 ( - 1217r, 6 ( ) 

'k"'=O m,- m k) kO'=O m k - m, 

xexp(mk - m,) -1217A,r" 

and 

The solution of the homogeneous portion of (78) is 
2 

j(s) =:0 0', exp(m,s). 
'=0 

Including the particular integral gives for 1 '" s '" % 
2 

sYt(s) ='0 (0', + (3,s +y,S2) exp(m,s) 
1=0 

2 

+6 (15, +SE,) exp(- m,s), 
'=0 

where 

T, 
y, = 2S'(m,) , 

(.l _ R, - yzS"(m,) 
1-',- S'(m,) , 

Q, 
E, =- D(m,) , 

- P, H,D'(m,) 
15, = D(m,) , 

(90) 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

and SCm) and D(m) are given by (39) and (53), respec-
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tively. The a, are determined from the boundary 
conditions 

and 

f(l) := - gel) - QH1) - 1211(A - B), 

f'(l):= - g '(1) - Q;' (1) - 1211A 

+ 1211 {[g(l) + f(l) JQo(O) + g(l)Ql (O)}, 

(98) 

(99) 

f" (1) := - g 1/ (1) - Q1"(l) + 1211{[g' (1) + f'(l)]Qo(O) 

+g'(l)Ql (0) + [g(l) + f(l)JQHO) +g(l)Qf(O)}. (100) 

Equations (98)-(100) ensure the continuity of Yt(s) and 
its first two derivatives at s ~ 1. 

To obtain Yl(S) for % <; s <; 2, we must solve 

sYI (s):= 1211 10.-3
/2 (s - t)Yl (s - t)Qo(t) dt 

+ 1211 1':~~2 (s - t)[yo(s - t) +Yt(s - t)]Qo(t)dt 

+ 1211 10 $-1 (s - t)yo (s - t)Ql (I) dt 
3/2 

+ 1211 10 (s - t)Ql (t) dt. (101) 
Let us set f(s) ~ SYI (s) for % <; s <; 2, h(s):= SYI (s) for 
1 <; s <; %, and g(s) = sYo(s) for 1..; s ..; 2. Hence, 

f s r 3/2 
f(s) := 1211 3/2 f(t)Qo (s - f) dt + 1211 h [h(f) + get) JQo (s - t) dt 

+ 1211 1/g(t)Ql (s - t) dt - 1211 103
/

2 
(s - t)Qt (t) dt. 

If we differentiate three times, 

L (f] = 12-1J( Qt (O)gl/(s) + QHO)g'(s) + Qt') (O)g(s)] 

+ 1211 11 S g(t) Q1" (s - t) dt, 

where the linear operator L is given by (37). Thus, 

L (f]= T(s), 

where 
2 

T(s) ~ 0 Z, exp(m,s), 
1=0 

(102) 

(103) 

(104) 

(105) 

(106) 

Therefore, the solution of the homogeneous equation is 
2 

f(s) =6 8, exp(m,s). (107) 
1=0 

Including the particular integral gives for % ..; s <; 2 
2 

SY1(S) =6 (8, +s<1>,) exp(m,s) , (108) 
1=0 

where 

<1>, ~Z,/S'(m,) (109) 

and SCm) is given by (39). The 8, are determined from 
the boundary conditions 
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f(%) :=h(!), (110) 

f'(%) = h'(%) +g'(!) + 1211Qo(O)f(%) 

+ Q;' (!) - 1211Qo(O)[h(!) + get)] (111) 

and 

r(i) = hI/ (i) +gl/ W + 1211Qo(O)f'(!) + 1211Q6(O)f(i) + Ql"(%) 

-1211Qo(0)[h'(%) +g'(!») - 1211Q6(0)[h(i) +g(i»). (112) 

Equations (110)- (112) ensure the continuity of Yt (s) and 
its first and second derivatives at s=i. 

Finally, we have (44) and (46) which yield Yt(s) for 
0..; s ..; 1. In contrast to the other three equations (45), 
(47), and (101), these equations can be integrated 
straightforwardly. Inasmuch as the thermodynamic 
properties do not depend on Yl (s) for 0 <; s <; 1, these 
integrations were performed numerically. 

Results for Yt(s), gl(S), and et(s) are plotted in Figs. 
2-4 for p* = 0.7. It is seen that gl (s) is smaller than 
goes) whereas Yt (s) is actually bigger than Yo(s) for s-1. 
As a result, we might expect the perturbation expan~ 
sion to converge more rapidly for g(s) than for yes). 
Indeed, if y(r) were calculated from a first-order 
perturbation expansion, negative values of y(r) would 
be obtained for high densities and low temperatures. 

Comparison with the Monte Carlo13 calculations of 
gt(s) and Yt(s) shows that the PYvalues of gt(s) and 
yds) are most seriously in error for s less than 1. 1a. 
The errors in the PY gl (s) and Yl (s) are much larger 
than was the case for goes) and Yo(s). 

THERMODYNAMIC PROPERTIES 

If we substitute (23) into (12), we obtain the perturba
tion expansion energy equation of state: 

A =Ao + ,BEAl + (j3E)2A2 + ... , (113) 

where Ao is given by Eq. (13), 

A f3/2 
Nf/T=-1211 s2Yo(s)ds 

B 1 
2 

= - 12116 A/2 [(im,- 1) exp(tm,) - (m l -1) 
1=0 ml 

xexp(m l )] (114) 

and 

A 2/NkBT= - 6111/ '2 S2[yO(S) +Yt(s)Jds 
2 

= t(A/NkBT) - 6116 {(Ct/m~)[(!m, - 1) exp(im,) 
1=0 

- (ml-1) exp(ml») - (iJ/mf)[(f mi - 3m l + 2) 

xexp(iml ) - (mi - 2m, + 2) exp(m,») 

- (Yzi mt) [( ¥ m~ - ¥ m~ + 9m l - 6) exp(1m,) 

- (mr - 3mi + 6m, - 6) exp(m,») 

+ (~/mN - (1ml + 1) exp(im l ) + (m l + 1) exp(m l ») 

+ (E/mm - (j-mi +3ml - 2) exp(im l ) 

+ (mi + 2m, - 2) exp(m l ) I}. (115) 

The pressure is obtained by differentiating: 
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(116) 

If we substitute (23) into (9), we obtain the perturba
tion expansion of the pressure equation of state 

P =Po + (3EPI + ... , 

where Po is given by Eq. (33) and 

p/k BT = - 41)[ ¥ YoG) - Yo(1) - Yl (1)] 
2 

= - 41) 6 [t A, exp(!m,) - (A, + 0'1 + (3, + YI) 
/'0 

(117) 

(118) 

If we substitute (24) into (19), we obtain the perturba
tion expansion of the compressibility equation of state 

(~~)T = (%ot +,BE(¥;)T + ... , 

where Po is given by Eq. (34), 

k~T (¥:)T =2~0(O)Ql(O), 
- ~ 
Qo(O) = (1 _1/)2 , 

(119) 

(120) 

(121) 

(122) 

It is to be noted that in the energy equation of state 
An (or Pn) is a functional of Yn-l (r) whereas in the pres
sure and compressibility equations of state Pn is a func
tional of Yn(r). Thus, the energy equation of state gives 
one higher-order term in the perturbation expansion 
than does either the pressure or compressibility equa
tions of state. In addition, the energy equation involves 
an integral of g(r) over values of r for which the PY 
g(r) seems fairly reliable. In contrast, the pressure 
and compressibility equations involve values of y(r), 
where the PY theory is less reliable. As a result, the 

-0.3 • . . 
• • 

-0.4 L--L._...J....._.L...-.....J.._....I-_.l.---L_-L.._....-~ 
o 0.2 0.4 0.6 0.8 1.0 

p* 

FIG. 5. ~ for the square-well potential with 1-1= i. The points 
are Me values13 and the curve gives the PY results. 
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ria 

energy equation of state may be expected to be more 
reliable than either the pressure or compressibility 
equation of state. 

Values for the thermodynamic functions have been 
published earlier. 10 With the exception of A 2, these 
values are correct. However, in the course of this 
work we discovered an error in our computer program 
for A2. For this reason we show A2 in Fig. 5. At low 
densities, where the PY theory is accurate, the agree
ment with the Monte Carlo values of A2 13 is good. How
ever, at high densities the PY values of A2 are too 
small in absolute magnitude. 

CONCLUDING REMARKS 

We have seen that the PY go(r) is fairly good, although 
too small at contact. Also, the PY gl (r) is rather poor 
especially near contact. One might expect that good re
sults could be obtained by correcting the errors in the 
PY g(r). That is, g(r) might be calculated from 

g(r) = go(r) + (3Egl (r) + [gPY (r) - g~Y (r) - BEgF (r) 1. (123) 

Actually, this was the motivation for this work. 

We have compared the PY g(r) for the square-well 
potential14 with the MC values15 for p* = O. 8 and (3€ = 1. 5 
in Fig. 6. It is seen that the PY g(r) is too large for 
r 2: 1 and r> 1. 4 and too small in between. For com
parison we have plotted the PY values for go(r) and 
go(r) + (3Egl (r) in Fig. 6. In Fig. 7 we have compared, 

4 

3 

2 

~ a 

4 

3 

2 

0 

p* = 0.8 

/3e = 1.5 

~_.L.-_____ ~ ______ ~_ 

p' ~ 0.8 

/3€ = 0 

1.0 1.5 2.0 2.5 
ria 

FIG. 7. RDF 
for square
well potential 
foq<=!. 
The points 
are Me 
values15 and 
the curves 
are calcu
lated from 
first-orde r 
perturbation 
theory using 
Me values 
values11 ,13 

for go(s) and 
gl (s). 
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for p*=O. 8, the MC values l1,13 ofgo(r) and go(r) + !3fgl(r) 
with the MC values14 of g(r). The agreement is quite 
good. In fact, it is much better than that obtained from 
(123). The PY estimate of the contribution of the higher
order terms is qualitatively satisfactory inasmuch as 
it is positive for r;:: 1 and r> 1. 4 and negative for 
1. 2;S r;s 1. 4. However, the PY estimate is much too 
large in magnitude. Thus, the PY theory cannot be used 
to obtain estimates of higher-order perturbation terms 
at high densities for the square-well potential. 

This may be seen from the thermodynamic properties 
also. The pressure at the high density p* = O. 85 is 
plotted in Fig. 6 of Ref. 14. The use of Eq. (123) cor
rects the initial values and slopes of the pressure and 
compressibility isochores. Even if this is done, the 
pressure and compressibility isochores remain un
satisfactory at low temperatures. On the other hand, 
the use of Eq. (123) with the energy equation does yield 
excellent values for the pressure. However, this is 
somewhat fortuitous because the energies and, more 
especially, the heat capacities obtained in this manner 
show appreciable errors. 

We conclude that for the square-well potential the 
higher-order perturbation terms are not adequately de
scribed by the Percus- Yevick theory. 
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One might also use Eq. (123) with the g's replaced 
by y's. However, this is even less satisfactory. 
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Internal-labeling operators * 
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A simple method is described for finding all possible "missing label" operators when a semisimple group is 
reduced according to a maximal semisimple subgroup. The operators may be chosen to be Hermitian and 
hence lead to an orthonormal basis. The solution is worked out for all seven cases of one missing label. In 
each case two independent subgroup scalars are found in the enveloping algebra of the group; either of 
them can be used as the missing label. 

1. INTRODUCTION 

In applications of compact groups to physical prob
lems, it is often necessary to decompose the irreduci
ble representations (IR's) of a group into IR's of a sub
group. It frequently happens that the subgroup of physi
cal interest does not provide enough labels to specify 
the basis states unambiguously. 

Elliottl solved this problem for the group-subgroup 
SU(3) :::>0(3) by a projection technique; good 0(3) states 
are projected from certain "intrinsic" states, and the 
missing label is provided by the intrinsic state from 
which the projection is made. The same approach has 
been used for 0(5):::> SU(2) xU(I)2 and for SU(4):::> SU(2) 
XSU(2). 3 A different solution of the internal labeling 
problem is provided by the method of elementary multi
plets (elementary permissible diagrams). 4,5,6,7 It has 
been shown8 that all subgroup IR's of all group IR's are 
defined by the stretched products of powers of a finite 
number of elementary multiplets (subgroup IR's be
longing to low-lying group IR's); the exponents of the 
powers of the elementary multiplets supply the missing 
(as well as nonmissing) labels. The two methods de
scribed in this paragraph define analytic but generally 
nonorthonormal bases. 

This paper is concerned with a complementary ap
proach to the missing label problem, namely, the use 
of basis functions which are the common eigenstates of 
some complete set of commuting Hermitian operators. 
BeSides the Casimir operators of group and subgroup 
and appropriate internal subgroup operators an addi
tional number9 t(rG -lG - re -le) of labeling operators 
must be found; r G' la' r e' le are the order and rank of 
group and subgroup. These missing label operators 
should be subgroup scalars in the enveloping algebra of 
the group. 

For SU(3) :::>0(3) there is one missing label. The 
SU(3) generators consist of an 0(3) vector LI [the 0(3) 
generators} and an 0(3) second rank tensor Qj' Barg
mann and Moshinsky4 suggested that the missing label 
could be 

(3) ""L (1 2 I ) X =LI iQJL-i-i .. . . . 
IJ t J - Z - J 

Later Racah10 stated without proof that the most general 
missing label is a polynomial in X( 3) and a second 
operator 

(4) "" Q (1 1 2) X = uL; JQk-JL-k-I' k . k iJk t - - t 
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x(~ 2. 2) (_ I)k 
Jk-J-k 

(actually the missing label may also depend on the group 
and subgroup Casimir operators and internal subgroup 
labels; we will not repeat this obvious point in similar 
situations throughout this paper). 

A proof of Racah's conjecture is given by Judd, 
Miller, Patera and Winternitz. 11 These authors show 
how for any group-subgroup a generating function can be 
constructed for subgroup scalars in the enveloping al
gebra of the group. Each labeling operator is charac
terized by its degrees in the various subgroup tensors 
occurring in the adjoint representation of the group. 
Thus for SU(3) :::>0(3) the generating function turns out to 
be 

Each factor in the denominator defines an independent 
labeling operator. Thus L2, Q2, Q3 are the 0(3) and 
SU(3) Casimir operators [actually the second order 
SU(3) Casimir operator is a linear combination of Q2 and 
L2; the third order SU(3) Casimir operator is a combi
nation of Q3 and L2Q. We do not belabor this point in 
Similar situations later in this paper J. L2Q and L2Q2 
are the labeling operators of Racah. The fact that L 3Q3 

occurs only linearly implies that its square is a poly
nomial in the other operators and hence redundant. The 
derivation treats the tensors L and Q as c-numbers; 
but in fact they are operators and L 3 Q3 itself can be ex
pressed in terms of the commutator of L2Q and L2Q2, so 
should be dropped as a member of the integrity basis of 
subgroup scalars. Although this method solves in prin
ciple the problem of determining all possible labeling 
operators for any group-subgroup, it turns out that the 
determination of the generating function is extremely 
laboriOUS in practice, even in the simplest cases. 

In Sec. 2 we describe a method for obtaining much 
more simply the information contained in the generating 
function. In Sec. 3 the method is applied to determine 
the most general labeling operator for all cases (seven) 
where there is one missing label. Section 4 contains a 
discussion of difficulties which arise when there is more 
than one miSSing label and possible future research. 

2. DESCRIPTION OF THE METHOD 

We are faced with the problem of finding all subgroup 
scalars in the enveloping algebra of a group. More pre-
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cis ely we wish to find a finite integrity basis, aset of 
elementary subgroup scalars in terms of which all can 
be expressed as polynomials. 

To this end we divide the elements of the group alge
bra into two sets of subgroup tensors. If we can now 
enumerate all higher tensors which can be formed as 
polynomials in the tensors of each set, we can also 
enumerate all subgroup scalars-each corresponds to 
a pair of tensors, one from each set, which transform 
by conjugate IR's of the subgroup. In this way we learn 
just the information given by the generating function of 
Judd et al. ,11 and can straightforwardly determine the 
finite integrity basis for subgroup scalars. 

We illustrate the method by considering a case in 
which the subgroup is 0(3) and the group generators de
compose into two 0(3) tensors one of which is L whose 
components are the 0(3) generators, the other of which 
is an 0(3) tensor Q of integer rank j. The integrity 
basis for higher tensors formed from L consists of L2 
and L. Setting aside L2, we note that there is just one 
way to construct a tensor of integer rank k from the 
components of L, and it is of degree k. It follows that 
there is one-to-one correspondence between 0(3) tensors 
constructed as polynomials in the components of Q alone 
and 0(3) scalars in the enveloping algebra of the group. 

To find the finite integrity basis for tensors which are 
polynomials in Q we consider the equivalent problem of 
finding the elementary multiplets for the labeling prob
lem SU(2j + 1)::l 0(3) restricted to the symmetric IR's 
(AO· •• 0) of SU(2j + 1); or if we set aside the 0(3) scalar 
Q2 the problem becomes that of finding elementary mul
tiplets for the labeling problem 0(2j + 1) ::l0(3) re
stricted to the IR's (0·. ·0;\.) of 0(2j + 1). From each 
elementary multiplet thus found we form an 0(3) scalar 
by contracting with the tensor of the same rank formed 
from powers of L. Since the counting is identical for 
the two problems it follows that the scalars thus 
formed, together with L2 and Q2, are an integrity basis 
for 0(3) scalars in the enveloping algebra of the group. 

The same procedure can be used, mutatis mutandi, 
for each group-subgroup of interest. 

3. CASES WITH ONE MISSING LABEL 

In this section the methods of the preceding section 
are used to determine the most general operator which 
can be used to solve the labeling problem for each of 
the seven cases (hopefully we have not overlooked any) 
with one missing label and a maximal subgroup. First 
we remark that when the method is used for a case 
with no missing label the integrity basis which one finds 
consists simply of the Casimir operators of group and 
subgroup. 

A. SU(3) J 0(3) 

The group generators decompose into two 0(3) ten
sors, the 0(3) generators L and a rank 2 tensor Q. 
Setting aside L2 and Q2, we observe that the members 
of the integrity basis for 0(3) scalars correspond to the 
elemdntary multiplets for the labeling problem 0(5) 
::J0(3) restricted to the IR's (OA) or 0(5). But these ele
mentary multiplets are known6 to be (1,2), (2,2), (3,0), 
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(3,3) with (3,3)2 redundant; the notation is (A,l). It 
follows that the integrity basis for 0(3) scalars in the 
enveloping algebra of SU(3) consists of L2, Q2, L2Q, 
L2Q2, Q3, L 3Qs with (LSQ3)2 redundant, in agreement 
with the result of Judd et al. ll Since this case has al
ready been discussed we pass on to the next. 

B. 0(5) J SU(2) X U(l) 

The 0(5) generators decompose under SU(2) XU(l) 
into an SU(2) x U(l) scalar D and three SU(2) vectors for 
which the U(1) label D has the values :I: 1, 0. The com
ponents of the D=:O vector L are the SU(2) generators. 
Let us denote by U, V the vectors with D ==:1: 1. We 
break the generators into two sets, one consisting of L, 
the other of U and V, setting aside for the moment the 
SU(2)XU(I) scalars D, L2, UV=="2;U,V,(-l)j. Then the 
integrity basis for SU(2) tensors with D == ° formed from 
the components of U and V consists of the elementary 
multiplets for the labeling problem SU(3)::l 0(3) -SU(2) 
restricted to the self-conjugate IR's (A,A) of SU(3). The 
elementary multiplets for this case are easily shown to 
be (1,1), (1,2), (2,0), (2,2) with (2,2)2 redundant [the 
notation is (A, l)]. It follows that the finite integrity 
basis for SU(2) xU(1) scalars in the enveloping algebra 
of 0(5) consists of D, L2, UV, UVL, UVL2, USV2, 
USV2L2 with (USV2L2)2 redundant. Now D, L2, UV, USV2 
correspond to the U(l), SU(2), and 0(5) Casimir opera
tors. There are two independent miSSing label opera
tors, namely 

UVL:=L; UjLJ V_j_J(~ ~ ~ .) 
iJ t J - t - J 

UVL2 == L; L j UJ Vk-JL_H(~ k
1 

• k
2

) 
ilk t - - t 

xG k~j _!)(_l)k. 

USV2L2 should be dropped from the integrity basis since 
it is expressible in terms of the commutator of UVL 
and UVL2. The most general miSSing label is a poly
nomial in UVL and UVL2. 

C. G2 J SU(3) 

The G2 generators decompose under SU(3) into a (1,1) 
octet T [the SU(3) generators], a (10) triplet U, and a 
(01) triplet V. We put U and V in one set, T in the 
other. 

Leaving aside for the moment the SU(3) scalar UV, 
we note that there is just one way to construct the SU(3) 
IR (pq) as a stretched product of powers of U and V-it 
is of degree pin U and q in V. 

Turning to the octet T and leaving aside for the time 
being the SU(3) scalar P we note that the integrity basis 
for SU(3) tensors which are polynomials in the compo
nents of T consists of the elementary multiplets for the 
labeling problem O(8)::l SU(3) restricted to the IR's 
(OOOA) of 0(8). These elementary multiplets are found to 
be (1,11), (2,11), (3,03), (3,30), (3,00) with (2,11)3 
redundant. 

It follows that the finite integrity basis for SU(3) 
scalars in the enveloping algebra of G2 consists of T2, 
UV, UVT, UVP, UST3 , VST3 , T3 with (UVT2)3 redun-
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dant. Actually, when operator properties are taken into 
account, (UVT2)2 is redundant since it can be expressed 
in terms of the commutator of [PT3 and UVT. The 
SU(3) scalars T2, T3, UV, and yJT3 can be identified 
with the Casimir operators of SU(3) and G2 • Thus the 
most general missing label operator is a polynomial in 
UVT and [PyJ (and the Casimir operators) plus another 
polynomial multiplied by UVT2. 

D. SU(4) > SU(2) X SU(2) X U(1) 

The SU(4) generators consist of D, an SU(2) XSU(2) 
xU(l) scalar, the generators S and T of the two SU(2) 
groups, each with the U(l) label D==O and two (!,!) 
tensors U and V with D ==± 1, respectively. We put S and 
T in one set of tensors, U and V in the other, leaving 
aside for now the SU(2) XSU(2) x U(l) scalars D, S2, T2. 
Then our SU(2)xSU(2) tensor (s,t), s, t integer, can be 
formed in just one way from the components of S and T. 

Turning to U and V, we notice that the finite integrity 
basis for SU(2) XSU(2) tensors with D::::O which are 
polynomials in U and V consists of the scalar UV and 
the elementary multiplets for the labeling problem 
SU(4) :::>SU(2)XSU(2) restricted to SU(4) IR's (AOA); here 
SU(2) XSU(2) is included in SU(4) as in the Wigner super
multiplet model. The elementary multiplets are found to 
be6 (1,11), (1,10), (1,01), (2,00), (2,11) with (2,11)2 
redundant. 

It follows that the integrity basis for SU(2) XSU(2) 
x U(l) scalars in the enveloping algebra of SU(4) consists 
of D, S2, T2, UV, UVS, UVT, UVST, rPyJ, rPV2ST with 
(rPV2ST)2 redundant. D, S2, T2, UV, UVS, rPV2 repre
sent the U(l), SU(2)xSU(2), SU(4) Casimir operators. 
The independent missing label operators are 

UVT=6UiJTkV_i_J./~lk ~ k)(-l)l, 
Uk • ~ -1-

rPV2ST is redundant, since it is expressible in terms of 
the commutator of UVT and UVST 0 The most general 
missing label is a polynomial in UVT, UVST 0 

E. Sp(6) :J Sp(4) X SU(2) 

The generators of Sp(6) consist of an SU(2) vector L 
[the SU(2) generators], an Sp(4) (20) tensor Q [the SP(4) 
generators] and a tensor T which is a (10) tensor under 
Sp(4) and an l=! spinor under SU(2). We put Land Q in 
one set of Sp(4)XSU(2) tensors and T in the other. 

First we find the integrity basis for Sp(4) XSU(2) ten
sors which are polynomials in the components of T. 
They are the elementary multiplets for the labeling 
problem SU(8) :::>Sp(4)xSU(2) restricted to symmetric 
SU(8) IR's (AOOOOOO). These elementary multiplets turn 
out to be (1 ; 10, !), (2; 01,0), (2; 00,0) [the notation in 
CA ;pq,Z)]. Leaving aside for the time being the Sp(4) 
XSU(2) scalar T2 - (2; 00,0), there is just one way to 
construct an Sp(4) tensor of rank (p, q) from the com
ponents of To It will have rank !p as an SU(2) tensor. 

Next let us find the integrity basis for Sp(4) tensors 
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formed from the components of Q. This mean finding 
the elementary multiplets for the labeling problem 0(10) 
:::> Sp(4) restricted to the IR's (0000;\) of 0(10) (we are 
leaving aside for the moment the Sp(4) scalar Q2J. These 
elementary multiplets turn out to be (1,20), (2,01), 
(2,02), (3,20), (4,00), (4,21) with (4,21)2 redundant 
[the not ation is (A, pq)J . 

Thus we find that the integrity basis for Sp(4) x SU (2) 
scalars in the enveloping algebra of Sp(6) consists of 
L2, Q2, Q4, T2, Q2T2, Q2T4, QT2L, Q3T2L, Q4T4L with 
(Q4T4L)2 redundant. The first six operators listed above 
correspond respectively to the SU(2), Sp(4), and Sp(6) 
Casimir operators, QT2L and Q3T2L are independent 
missing label operators, in terms of which the general 
missing label operator is a polynomial. Q4rL should be 
dropped, for it is expressible in terms of the commu
tator of QT2 L and Q3T2 L. 

F. 0(7) :J G z 

The generators of 0('7) decompose under G2 into a (01) 
tensor T (the G2 generators) and a (10) tensor S. 

To find the integrity basis for G2 tensors formed 
from the components of S we need the elementary multi
plets for the labeling problem 0(7):::> G2 , restricted to 
the 0(7) IR's (00;\) (we are setting aside for the moment 
the G2 scalar S2). The solution of this problem is 
known. 7 There is just a single elementary multiplet 
(1,10). 

The integrity basis for G2 tensors formed from T 
consists of the elementary multiplets for the labeling 
problem 0(14):::> G2 restricted to the 0(14) IR's (000000;\) 
(we ignore for now the G2 scalar T2). We need to con
sider only those elementary multiplets with second G2 

IR label zero, since the rest cannot combine with 
stretched powers of the (10) tensor S to form a scalar 0 

The relevant elementary multiplets are (2,20), (3,10), 
(3,30), (4,20), (6,00), (6,30) with (6,30)2 redundant. 

Hence the integrity basis for G2 scalars in the en
veloping algebra of 0(7) consists of T2, T 6, S2, T2S2, 
T 3S3, T 3S, T 4Sz, T 6S3 with (T6S3)2 redundant. TZ, T6 are 
the Gz Casimir operators; S2, T 2S2, T3S3 represent 
those of 0(7). Thus T 3S or T 4S2 or a polynomial in them 
can serve as the missing label. ~S3 can be expressed 
in terms of the commutator of T 3S and T 4S2 and should 
be dropped. 

G. SU(3) X SU(3) :J SU(3) 

This is the external labeling problem for SU(3). 
0'Raifeartaigh12 suggested a mixed or polarized Casimir 
operator to lift the degeneracy in the SU(3) external 
labeling problem. His operator is a linear combination 
of UV2 and UZV below; its matrix elements with respect 
to a certain nonorthonormal basis were given by Chew 
and Sharp.13 We will see that this is not the most gen
eral missing label. 

The SU(3)XSU(3) generators decompose into two 
octets U and V under SU(3). The integrity basis for ten
sors formed from either is given in subsection C of this 
section. It is straightforward to show that the integrity 
basis for scalars formed from these tensors consists of 
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[J2, V2, UV, [J2V, UV2, [J2V2, [J2, VS, lJ3VS with (lJ3VS)2 
redundant. ~, y2, UV and lfl, VS, ~V represent the 
quadratic and cubic Casimir operators, respectively, 
of the three SU(3) groups. UV2, [J2y2 or any polynomial 
in them is the most general missing label. lJ3y3 is 
dropped because it is expressible in terms of the COm
mutator of UV2 and [J2V2. 

4. DISCUSSION 

The forms of the general missing label operators for 
the seven cases with one missing label show a remark
able similarity. In each case there are two independent 
operators [and, for G2 :::>SU(3), a third which can appear 
at most linearly because its square is expressible in 
terms of the others] and the missing operator is an ar
bitrary polynomial in these two. The freedom permitted 
in choosing the missing label should be used to make it 
correspond, perhaps empirically, to some quantity of 
physical interest. 

Several difficulties arise when one attempts to treat 
group-subgroup problems with two or more missing 
labels. 

The determination of the relevant integrity basis for 
subgroup scalars becomes more difficult. The details 
have been worked out, however, for SU(4):::> SU(2) 
xSU(2) (Wigner supermultiplet model) by Miller, 14 using 
the generating function method; his results have been 
checked by the method of the present paper. The work 
has also been done for the group-subgroup 0(5) 
:::> SU(2). However no attempt has yet been made in these 
two cases to reduce the rather large number of scalars 
in the integrity basis by utilizing relations between them 
ariSing out of commutation rules. 

A more fundamental problem to be solved is that of 
determining the most general pair of commuting miSSing 
labels. Moshinsky and NagePS have given one example 
of such a commuting pair for the case SU(4):::> SU(2) 
XSU(2). 

As pointed out by Racah, 10 the eigenvalues and eigen
states of any operator of the type derived in the article 
must be determined numerically in practice, when the 
subgroup multiplicity exceeds two. Such calculations 
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have already been carried out extensively for the group
subgroup SU(3):::>0(3)y,l6 Similar calculations would be 
useful for many of the group-subgroup pairs discussed 
above in Sec. 3. 
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The expansion theorem for the twisted product associated with the Weyl form of CCR for n degrees of 
freedom is generalized to involve tempered distributions. 

I. INTRODUCTION 

In a previous paper by the author, 1 a mathematically 
rigorous expansion theorem for the twisted product as
sociated with the Weyl form of CCR for n degrees of 
freedom was obtained. The resulting asymptotic formula 
is valid for the class of c~ functions rapidly decreasing 
at 00. In this paper, we extend our previous results to 
the twisted product of g and T, where g is a COO function 
on the phase space R 2n , slowly decreasing at 00, and T, 
any tempered distribution. 

II. NOTATIONS AND PRELIMINARIES 

Let O! = (O! l' 0!2' ••. , O! k) be a k- tuple index of non
negative integers. We shall write 

k 

iO!i=LO!" 
j=1 J 

when k= 211, 

U"=(_i)I"1 (_a )"1 (_a ) "'2 ... (_a )"'n 
aXn+1 ilXn+2 aXn 

Let S(Rk) denote the space of COO complex functions on 
R\ rapidly decreasing at 00. For q, E S(R k), define its 
Fourier transform Fq, by 

(Fq,)(O = (27T)-k/2 J exp(i~' x)q,(x) dx, 

and the inverse of F is given by 

(P-1q,)(X) = (27T)"k/2 J exp( - ix' ~) q,(O d~, 

where· is the inner product in Rk. Unless otherwise in
dicated, our integrals are over Rk with d~ denoting the 
Lebesque measure. S(Rk) can be given a Hausdorff local
ly convex topology which is metrizable and complete. 
The topological dual of S(Rk), denoted by S'(R k), is known 
as the space of tempered distributions. Let T E S'(Rk), 
we write 

(T, q,) to denote the value of T on q, E S(R k
), 

and its Fourier transform and the inverse, also denoted 
by F, F- 1

, are defined by 
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(FT, q,) =(T, Fq,), 

(P-1T,q,)=(T,p-1q,) 'fI q,ES(R k ). 

It is well known that F, p-1 are continuous [in the 
sense of strong topology of S'(Rk)] isomorphisms from 
S'(R k

) onto itself. 

Finally, we denote by 0 M(R k) the space of c~ functions 
on Rk, slowly increasing at 00 and also O~(Rk), the space 
of distributions rapidly decreasing at 00. It is known 
that elements in 0 M(Rk) and O~(Rk) are tempered and 
S(Rk) is contained in both. It is also true that F, p-l are 
topolOgical isomorphisms from 0 M(Rk) onto O;(Rk) and 
o ;(Rk) onto 0 M(R k). For details about tempered dis
tributions, see Ref. 2. 

III. TWISTED CONVOLUTION AND TWISTED 
PRODUCT 

In the following, we extend the definitions of the 
twisted convolution and the twisted product to involve 
tempered distributions. Let us recall that if f, g E S(R2n), 
the convolution of f and g is 

(f*g)(17)= J fWg(17-0d~, 
and the twisted convolution of f and g of index c > 0 is 1 

(f * cg)(17) = J exp[ - iC(17 x O/2]fWg(17 - Od~, 

where 17 = (u, v), ~ = (s, t) are elements of R 2n and 17 x ~ 
=u·t-v·s. 

Let E"(c,~) = exp[ic(17 x ~)/2], we have the following: 

Lemma 3.1: 

(f* cg)(17)=f*(E ng)(17), 

f* cgE S(R2n) 'fI f, gE S(R2n). 

Proof: Since E ngES(R2n) for each 17 ER2n, we have 

f*(E"g)(17)= J f(~)(E"g)(17 - Od~ 

= J f(~) exp[iCT/ x (17 - O/2]g(17 - 0 d~. 
Now 17 x (17 - ~) = -17 x ~; therefore, 

f * (E~g)(17) = J exp[ - ic(17 x 0/2] f(Og(17 - ~) d~ 

= (jHg)(17). 

f* cgE S(R2n) follows from the fact that convolution is a 
closed operation in S(R2n). II I 

If one considers f * g E S(R2") as a tempered dis
tribution, one has, after a change of variable, 

(f * g, q,) = J J f(~) g(17) q,(~ + 17) d~ d17 

=J fm(g",q,(~+17)d~ 
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=(Jp (gn' 4>{~ +11»> V 4> ES{R
2

,,). 

Similarly, considering f * eg as a tempered distribu
tion, one has 

(f * eg, <1» = (f * (Eng), <1» 

=U(,«E(g)" 4>(~+11)>> V 4> ES(R2
"). 

Note that f * eg* g * ef in generaL 

Motivated by the above, we make the following de
finitions: 

Definition 3.1: LetfEO~(R2") and TES'(R2n). The 
twisted convolution of f and T (of index c) is given by 

f*eT=f*(E(e)T) in the following sense: 

(f* eT, <1» = (j* (E(e)T), 4» 

=(fI,«E/(e)T)" <I>(U11») V 4> <o:S(R2"). 

In the above definition, for each ~ <0: R 2n and e> 0, 
E/e)T is the tempered distribution given by 

«E(e)T)n' <I>(~ +11» = (T"E(e)4>(~ +11» =>ItW 

and >It E S(R2"). It follows from the property of con
volution 2 that f * eT = f* (E(e)T) is again a tempered 
distribution. 

Definition 3.2: Let gE 0 M(R2n) and T E S'(R2n). The 
twisted product (of index c) goeT is given by, 

g ocT == (21T)"n P-I[(Fg) * e(FT)]. 

Since FgEO~(R2n) and FTES'(R2n) so that (Fg)*e(FT) 
ES'(R2n), therefore goeT is well defined and is again a 
tempered distribution. 

Remark 3.1: Definition 3.2 is designed so that the 
Weyl operator preserves the twisted product. If f, g 
are elements of S(R 2n), the Weyl operator w(f 0 eg) cor
responding to f oeg has the property that w(f oeg) 
=w(f)w(g). For details, see Ref. 1. 

IV. AN ASYMPTOTIC FORMULA FOR go cT 

The following is a generalized version of the expansion 
theorem in Ref. 1, valid for e~ functions on R 2n, slowly 
increasing at 00. 

Theorem 4.1: LetgEOM(R 2 n) and TES'(R2") and 

G(e, <I»=(goeT, <1», 4> <o:S(R2"). 

Then, for e> ° and a positive integer N, 

N 

G(e, <1» = L (bk[g, T], 4»e k + oreN) 
k=0 

as e to for each <1>, where 

b [g T]-.!:. "'-D"go"T (')k 1 
k' - 2 wad ' 

is a tempered distribution. 

Remark 4. 1: The summation in bk is over all distinct 
2n-tuples a, such that lal =k. D"gand o"T are to be 
understood in the distribution sense. 

The following lemmas are needed to give a proof to 
Theorem 4.1. 
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Lemma 4. 1: Considered as a function of e, G(e, 4» is 
infinitely differentiable for each <I> <0: S(R2

"), and 

Ok ~~~' <1» = (21T)"" (~r . {(Fg)" «FT)!, (11 x OkE,(e) 

x p-l <1>(11 + ~)>>. 

Proof: For each <I> E S(R2") 

G(e, <1» = (go eT, <1» = (21T)""(p-l [(Fg) * e(FT)], <1» 

= (21T)""«FG) * e(FT), p-l<1» 

= (21T)-"«Fg) * (E,(e)FT), F-1<l» 

= (21T)"" «Fg)" «E,(e)FT)(, p-I <l>(11 + ~)>> 

by Lemma 3. 1. 

Let >It(11, c) = «E,(e)FT)p F- I <1>(11 + 0>. Consider >It as a 
function of 11 and e a parameter, >It is differentiable in e 
in a neighborhood of 0, and 

oG(e, <1» = (21T)-" (F) i.. >It) 
oe g" oe 

(see Ref. 3, Chap. 3, Lemma 3.2). Since 

W(-I7, c) = «E,(e)FT)(, p-I<l>('17 +~» 

= «FT)(, E,(e) p-I<l>(11 + ~», 

we have 

~: = (FT)(, aOe E,(e)p-l<l>('17 + ~») 
using the same lemma as before. Therefore, 

The same argument as above can be used to show that 

akG(e, <1» 

De k 

= (21T)-"«Fg)" «FT)!, WY('17 x ~)kE,(e)F"l<l>('17 + 0».111 
Lemma 4.2: 

okG(O, <I» /k l -(b [ T] <1» oek . - kg, , 

We omit the details of the proof here since the argu
ments given in Lemma 5. 3 of Ref. 1 apply almost 
verbatim to the present case. 

Proof of Theorem 4.1: As a function of e, G(e, <1» is 
infinitely differentiable for each <I> <0: S(R 2

"). Using 
Taylor's theorem with a remainder and expanding 
G(e, <1» to N terms about 0 in powers of e > 0, we have 

N G(kl(O, <1» 
G(e,<I»= 6 kl eN+RN(e,<I>,r(<I») 

k20 

where 
R ( <I> (<1») = G(N.l l(r(<I», <1» eN.l 

N e, ,r (N + 1)1 ' 

r( <1» is a real number depending on <1>, and 0 < r( <I> ) < e. 
Since 

we have to show that 
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e-NIRN(e,<I>, T(<I>))I-O as etO to complete the proof. 

From Lemma 4. 1 we see that 

R N(C, <1>, T( <1>)) :::= (21T)"n( ti)N+l 

xL: (1/ a! ) «(1)'" Fg) * T( <I> )(1)')'" FT, p-l<1»CN+1
; 

therefore, if one can show 

I (21T)-n(M)N+IL: (1/a !) «(1)"'Fg) * T(<I»(1)')"'FT, p-l<1» I 
~ B(<I» < 00 

for some constant B( <1» ~ 0, then we have 

c-NIRN(e,<I>,T(<I»)I-O as dO. 

Using the fact that every tempered distribution is the 
derivative of a continuous function slowly increasing at 
Q(), we can write 

and 

for some multi-indices {3, y and numbers k, t> 0, where 
g", and I", are bounded continuous functions on R2n. 

Let ir:::= p-l<1> '= S(R2n). Thus 

(1)"'Fg*E~(T)(1)I)"'FT, ir) 

:::=«(1)"Fg)(1)), «En(T)(1)')aFT)(~), ir(~ +1)))) 

:::=(D~[(1 + 11)12)k/2g ,.(1))]' 

X(En(T)D~[(1 + I ~ 12)t/2/,,(O], ir(~ +1)))). 

We denote 

Xa(1))=(En(T)D~[(l + I ~ 1
2 )t/2/",(O, ir(~ +1))) 

= (f"W, (1+ 1~12)t/2D~[En(T)ir(~+1))]) 

= J I",W(1 + I ~ 12)t/2 D~[En(T)ir( ~ + 1))] d~ 

= 2: (y) p.( T, 1)) 
q"'r q 

where p.( T, 1)) is a polynomial in T and 1) of degree no 
more than 1 y I. The last equation is obtained by applying 
the Leibnitz rule to D~[En(T)ir(~ +1))] and that D~En(T) 
= p.( T, 1))En( T). For each T, 1), it is clear that Xa is in 
S(R 2

"). 

Likewise, 
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= (g",(1)), (1 + 11) 12)k/2 D~Xa(1)) 

= ~ 'Ge (;) (!) (ga(1)), (1 + 11) 12)k'2 P.e(T, 1)) 

x (faW, (1 + I ~ 12)t/2 D~-P[En(T)Drqir(H1))])) 

-:0 2: 2: (y)({3) ({3-P) 
- ."r p"e ."'e-p q P u 

x J J ga(1))(1 + 11) 12)k/2 p.e(T,1))/aW(1 + I ~ 12)t/2 

X Q II( T, ~) D~p-n D~-' ir( ~ + 1)) d~ d1). 

In the above, p.e(T,1))=D~P.(T,1)) and IQ.(T, 01 
= ID~-PE.( T) 1 are polynomials in T, 1) and T, ~ respec
tively, both of degree no more than 1{31. 

Let 

A(g",) = sup Ig",(1)) I and AUa)= sup I 1,.(1))1 
• 

and 

A(g",), AUa) are constants for each a and C.e(1)), D.(~) 
are polynomials in 1) and ~, respectively. 

In these notions, we have 

I «(1)"Fg)*(E.( T)(1) ')'" FT), ir) I 

~:0 L L (Y)({3)({3-P)A(g",)AU",) 
."r P"B lI"Il-P P P u 

x I D~-p-n D~-' ir( ~ + 1)) I d~ d1) = B "'( <1» < 00 

since <I> =FirES(R2n
). Finally, we set 

B(<I» = (21T)""( tr l 2: (1/ a! )Ba(<I» < Q() 

to complete the proof. 1 1 1 
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Pauli master equation is derived rigorously in the framework of quantum stochastic processes. 

In a series of papers102 Davies has developed a the
ory of quantum stochastic processes to describe cer
tain quantum measurements, where observations of the 
arri val of quanta at a counter are made within an in
terval of time. For example, optical experiments for 
counting photons set up in quantum optics, where mea
surements extend over a period of time and involve 
correlation functions. It is a quantum mechanical the
ory of stochastic processes. In this theory, the time 
evolution of systems is represented by a one-parameter 
strongly continuous semigroup of positive endomor
phisms of the trace class operators, while in the 
classical theory, by positive real line. It has been 
shown that this theory corresponds most closely to the 
Markov jump processes in the classical theory of 
stochastic processes. 

We shall investigate in the present note, the time 
evolution of quantum stochastic process in terms of 
(occupation) probabilities, viz. the Pauli master equa
tion, which describes the evolution of irreversible 
processes in quantum systems. 

Firstly, we shall derive formally, but rigorously, 
Pauli master equation for any "phase cell,,3 in the sam
ple space of a quantum stochastic process. Then, we 
show two spec ial cases of mater equations: (i) the phase 
cell is only the zero event, and (ii) the phase cell is 
equal to the whole sample space. It turns out that in 
case (ii) the "coarse-graining" is too "coarse, " so that 
the master equation goes to zero; viz. the whole sys
tem is in a state of equilibrium. On the contrary, there 
is a nontrivial master equation in the case (i). Finally, 
we give three examples where the master equations for 
case (i) are shown explicitly. 

A brief outline of the general formulation of quantum 
stochastic process is presented here. For more de
tailed information we refer the reader to Davies origin
al pap~rs. t.2 

Each event is represented by a point (x, t) in X x (0, (0), 
where t is the instant at which the event occurs at 
x E X, here X is a separable locally compact Hausdorff 
space representing the set of all possible values of some 
observables. A sample point is a sequence of events 
{(XI' tl); i = 1,2,' .. } such that 0 <it < ti <"', and either 
the sequence terminates or tn - 00 as n - 00. The sample 
space X", is defined as the set of all sample points, it 
is a Borel space. For each time t> 0, we define the 
sample space X t as the set of all finite sequences 
{(Xio td; i = 1,2, ... ,n} such that 0 < tl < t2 < ... < tn ~ t. 
X t is also a Borel space. 

For 0 < S < t ~ oc, there is a Borel map 1T of X t onto 
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Xs in which each sequence {(XI, tl); i = 1,2, ... ,n} is 
taken to the subsequence formed by dropping all the 
events occurring after time s. Given any s, t> 0, there 
is a one-one Borel isomorphism II. from XsXXt onto 
Xs+t defined by 

1I.{(Xh sl)r.t>(Y Jy tll ot} 

= (Yt,fl)' .. (Yn,tn), (xt,t + sl)' .. (xm, t + sm)· 

Let V = Ts(N) be the ordered Banach space (under the 
trace norm) of all self-adjoint trace class operators on 
a Hilbert space N, and r=tr, the normalized trace on 
TAN). (V, r) is the state space, 2 and L(V) is the vector 
space of all bounded operators on V, endowed with the 
strong-operator topology. 

A quantum stochastic process on X, V is a family of 
positive a-additive measures {[t; t~ o} on Xt with val
ues in L(V) such that 

(i) r([t(Xt,p)]=r(p) for all pEV; 

(ii) [0 (Xo, p) = p for all p E V, where 

XO ={(XI, 0); all Xi EX}; 

(iii) for each p E V, t- [t(Xt.p) is continuous 

for all t~ 0; 

(iv) forallpEV and s,t>O 

[t(A,[ s(A',p» =[ tot s(AXA',p) 

=[ t+s(II.(A x A'), p) 

for Borel subsets A ~ X t and A' ~ X s' (1) 

The last condition implies that the time evolution is 
homogeneous. It is a generalization of the Chapman
Kolmogorovequation. 

The physical implications of this setting are follow
ing: [ t is considered as a family of filters accepting a 
state p E V at time zero and emitting an output state 
[t(A,p) conditional on the set A~Xt at the latter time 
t. 7[[ t(A,p»), in fact 7[[ t(A,p)Vr(p] with r(p]= 1, can 
be interpreted as the probability that the physical 
quantity can be observed in the state p and it takes 
values in A up to time t. In fact, 7[[t(A,p)] is the 
"occupation" probability of the state p. Hence, Pauli 
master equation in quantum stochastic processes is an 
equation in terms of r([ t(A, p)]. 

Before studying the master equation, let us introduce 
some Borel subsets in the sample space Xt. 

Let {~}i!1 be Borel subsets of X. For 0 < SI < tl 
< ... < SIll < tm ~ t, let A ~ X t be the Borel subset defined 
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by 

Then, the sets I:.. defined in this form constitute a semi
ring, which generates the a-field of all Borel subsets of 
X t. Without loss of generality, we shall consider Borel 
subset of X t only in this form. We note that I:.. depends 
on t; and, obviously, r i + 0 as t+ O. Now, let 

1:..0 ",{(x" O)iol; Xi E I:..i }. (2) 

We assume that" I:.. approaches to /:..0" as t + 0, denoted 
by I:.. ~ 1:..0 as t + O. In particular, for I:.. ",Xt, 

X t tXo as t+ 0, 

where Xu ={(Xh 0); all Xi EX}; and for I:..=z, the zero 
event, 

z.z ast+O. 

We are now ready to derive roaster equation. For 
any Borel sets I:.. <: X t and 1:..' <: X 8 , 

-ddt T[[ t(l:.., p)] = lims-1T[[ t+8(X(1:.. X 1:..'), p) - [ t(l:.., p)] 
8'0 

where the second equality is due to Eq. (1). This limit 
can exist if 1:..' t ~ and the limit of s-I[[ 8(1:..', p) - p] 
exists whenever s + O. Let this limit be A(~)p, 1. e. , 

lims·![[s(I:..',p)-p)",A(l:..o)p (3) 
8'0 

where the limit is taken in the strong-operator topology 
on L(V), and 1:..0 is given by Eq. (2). A(l:..ij) is a linear 
operator with domain 

o (A(I:..Q)) ",{p E V; lims"1[[ 8(1:..', p) - p) exists in V}. 
8'0 

We note that D(A(I:..O» is nonempty, it contains at least 
zero element. Therefore, Pauli roaster equation is 

(4) 

This general form of master equation deserves some 
remarks: 

First, we note that the derivation of Eq. (4) depends 
mainly on the assumptions of Eq. (1) and A(t:..Q) in Eq. 
(3). Equation (1), a generalization of Chapman
Kolmogorov equation, has the nature similar to the as
sumption of randomness, it is a general form of vari
ous hypotheses known as Stossansatz, molecular 
chaos hypothesis or random approximation. Neverthe
less, the assumption of randomness (1), as we have 
seen above, is not sufficient to obtain Pauli master 
equation (4). The main reason is that Eq. (4) is 
Markovian type, but quantum stochastic process, in 
general, is not. The existence of A(~) in (3) is an 
additional condition which ensures a quantum stochastic 
process to be Markovian. Indeed, A(AQ), under a cer
tain assumptions, is the infinetesimal generator of a 
semigroup on V (see the Appendix). 
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In general, the conditions given in the Appendix are 
not fulfilled for an arbitrary Borel subset I:.. in a sample 
space X"~ In particular, the assumption (A7) holds only 
for 1:.., which is either the zero event z, or the whole 
sample space X"~ Therefore, the possible master equa
tions in quantum stochastic processes are only these 
two cases, which are derived precisely as follows: 

Case (i): ~ = z 

We have [ f(Z, p) '" Sf(P), where St: V- V is a strongly 
continuous one-parameter semigroup on V. 1 St takes a 
pure state p to another pure state Step) for all t~ O. 

Hence, there is a strongly continuous semigroup B t 
on H such that St( p) '" B ,pBT, 1 For a pure state p of the 
positive cone v+ of V, p =; @ ~ for; EH. 4 Since z .. z as 
t + 0, thus from Eq. (3) 

A(z)p '" limt-1[Sf(P) - p] 
f'O 

=limrl[Bf(~ @~)Bt - (~@~)] 
f'O 

=limt-l(Bt~) 0(B t ;)- (;01)] 
t·o 

Let Z;"'limt.ort[Bt~-;] for ;EO(Z), the domain of Z; 
1. e., Z is the infinities mal generator of the strongly 
continuous semigroup B t onH. We note that limf.oBt; 
",Bo~ "'; for all ; EH. Then, 

A(z)p",(Z~)0~+;0(Z~) for ';EO(Z), 

Therefore, 

T[[ t(z, A .. (p»] '" T[ St(A .. (p»] 

= T[Bt{(Z';) @~ + ~ @(Z';)}BtJ 

'" T[(BtZ';) 0 (B t;)+ (Bt~) 0 (B tZ ~)] 

for all ; E D (Z). We use a fact: B,z '" ZBf for all 
.; E D (Z), 5 then the Pauli master equation for zero event 
is 

d 
dt T[[ t(z, p)] '" T[[ t(z ,A(z)p)] 

for all .; E D(Z). 

'" T[(ZB ,;) @ (Bt~) + (B t ';) 0 (ZB t~») 

",(ZB t';, B t ';) +(B t';, ZB t.;) 

"'2Re(ZBt.;,Bt~) (5) 

Moreover, the total interaction rate R is defined as a 
unique positive, self-adjoint bounded operator on H such 
that 

(6) 

where f), called a bounded stochastic kernel on X, V, is 
a bounded positive a-additive measure on the a-field of 
Borel sets in X with values in L(V); and! 

f)t(X, p) == rl [t(AL p) 

with A} = {all sample points in J4 containing exactly 1 
events}. Then, for'; E D (Z), 
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2Re<Z~,~=-<R~,~ (7) 

from a result of Davies. 1 Substituting (7) into (5), we 
have 

d 
dt T[t ,(z, p)] = - (RB,~,B,~ 

=- T(R(B,~)®(B,~)] 

=-T(RS,(p)], (8) 

for p = ~ ® ~ with ~ E O(Z). Let 

K={t a,.~,. ®f,.; ~,.E D(Z), n= 1,2, ... }, 
.. ·1 

Then K s: V. As ~ ED (Z) implies B,~ ED (Z) for all t ~ O. 
Hence, Eq. (8) holds for all p E K. However, K is dense 
in V, it is also true for all P E V. Therefore, Eq. (8) is 
Pauli master equation for zero event z. 

Case (ti'l: A = Xc 

We have t ,(X"p) = T,(p), where T,: V- V is a 
strongly continuous one-parameter semigroup on V. 1 

From the definition of t to T\:T,(p)] = T(p] for all p E V; 
therefore, 

(9) 

This equation can also be obtained by our Eq. (4). In 
fact, we let a = a' =X, =X4 , and note that X, I Xo as 

• t .. o. Hence, from Eq. (3), 

is the infinitesmal generator of the semigroup T,. Now, 
by the following identity1 

r1[T ,(p) - p] = t-1[S,(p) - p] + 9, (X, p) + ott), 

we have 

A (Xo)p=A(z)p + 9(X,p) 

where we have used Eq. (3) for a' =z, and a lemma in 
Ref. 1 that fj,(X,p) converges in norm to fj(X,p) for 
all P E Vas t- O. Thus, 

T(A(Xo)p] = T[A(z)p] + T(9 (X, p)]. 

SimUar to case (i), let p = ~ ® ~ for ~ E D z, then 

T(A(z)p] = T(Z~) ®~ + ~ ® (Z~)] 

=(Z~, ~ +(~, Z~ = 2 Re(Z~,~. 

On the other hand, 

T(fj (X, p)] = T( pRJ 

= T(~ ®~)R]=<~,R~ 

for p = ~ ®~. Therefore, from Eq. (7), 

i[A(Xo)p]=2Re(Z~, 0 +(R~, ~ =0 

(6') 

for p = 1; ® 1 with ~ ED (Z). Again, by a similar argument 
in case (i), we have T(A(Xo)p] =0 for all pE V. Hence, 
Eq' (4) is now 

d 
dt T(t ,(Xt. p)] = T(t t(Xt.A(Xo)p») 

= T[A(Xo)p] =0 
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which is Eq. (9). 

In fact, {Tt;t~ O} is a dynamical semigroup in the 
sense of Kossakowski, 6 who has studied extensively the 
existence of A(X,). However, Pauli master equation (9) 
is trivial; in other words, the system is in a state of 
equilibrium. The main reason for this situation: This 
case a =Xt is too "coarse" for the "coarse-graining" 
in sample space X,. 

From the viewpoint of master equations, case (i) is 
more interesting than case (ii). We give three examples 
to show different types of master equations for case (i) . 

Example 1: Let X=' R, and V = the ordered Banach 
space of all bounded signed Borel measures on X. De
fine T on V by T(P.) = p.(X), then T is a strictly positive 
linear functional on V, and (V, T) is a state space. 2 The 
set {/-L E V+; T(/-L) = I} of normalized states on V is exact
ly the set of probability measures on JR. We consider a 
Markov jump process with linear increments. 7 Suppose 
that between jumps the random variables vary linearly 
at a rate c, and the interaction rate is given by a con
stant a> O. Finally, we assume that the jumps are de
scribed by a stochastic kernel K. 

A physical example of Markov jump process is parti
cles traveling at uniform speed through homogeneous 
matter occasionally scoring a collision. Each collision 
produces a change of energy regulated by K. The transi
tion probabilities for the energy is a generalization of 
the compound Poisson distribution, 7 if the number of 
collision is a Poisson process. This is the case under 
the hypotheSiS concerning homogeneity of space and 
lack of memory. Furthermore, if it is assumed that 
between collisions the energy is dissipated at a constant 
rate due to adsorption or friction, etc., then it is a 
Markov jump process with linear increments. 

A quantum stochastic process has been constructed 
for this jump process, 1 hence the master equation can 
be derived by Eq. (8). Indeed, St is defined by 

(St/-L)(a) = exp(- af)/-L(a- ct) 

for a s: X and /-L E V. fj is defined on X, V by 

[fj (a, /-L)J(a') = a J~ K(x, a')/-L (dx). 

It can be shown that SI is a one-parameter strongly con
tinuous semigroup on V taking pure states to pure 
states; and 9 is a bounded stochastic kernel. Moreover, 

T(9 (X, /-L)] = U2 (X, JL)](X) = a fxK(x,X)JL d(x) = ar[/-L] 

for all /-L E V. Hence, the total interaction rate R '" a. 
Therefore, by Eq. (8) the master equation is 

d 
dt T(t t(Z, /-L)] = - a T(St(p.)] = - a exp(- at)T[/-L J. 

If /-L is a probability measure, then rhs of the above 
equation is - a exp(- at). 

Example 2: We consider the quantum stochastic 
process corresponding to a finite number of detectors 
set up to measure the arrival of particles in a beam of 
fermions. 1 Let H be the antisymmetric Fock space on 
HI =L2(JR3) ®<J:2n+1 so that 

H=<J:fIJHlfIJ (H1 ®H1)a fIJ ·•·. 
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Let x 1, ... ,Xn E rn3 be the positions of detectors 
D 1, ••• ,Dn, respectively. And, let!to ... .fnEH1 be con
centrated in small neighborhoods of Xl' ••• ,Xn, respec
tively. Define a mapping cp: H1 - L(H) such that it takes 
test functions in H 1 to the bounded annihilation opera
tors in L(H) associated with the representation of 
canonical anticommutation relation on H. Let annihila
tion operator CPi associated with the detector Di be 
cp(f,). Suppose that Di is sensitive to the field averaged 
over a small neighborhood of Xi' T(cptcp,p] for each 
p E T.(Hr and x, E rn3 gives the rate of arrival of parti
cles at x, per unit area and unit time. If the unperturbed 
Hamiltonian on H is Ho. Then the infinitesimal genera
tors f) and Z for the corresponding quantum stochastic 
process are given by1 

f)(a.,P)=6 cp,PCPt 
'EA 

for a.<: :lR3 and 
n 

Z=iHo-6 cprcp" 
1=1 

respectively. Therefore, the total interaction rate 
R = 2 L;~=1 CPTCPi. From Eq. (8), the master equation is 

d n 

dt T([t(z,p)] =- 2~ T[cpTcp,St(p»), 

which gives the total rate of arrival of particles at 
detectors D1, ••• ,Do up to time t. For p = ~ 0 ~ with 
~ E D (Z), we obtain master equation in the following 
form: 

d n 

dt T[[ t(z, p») = - 2~ T[cpTcp,(Bt~) 0 (B t~») 

o 

= - 26 (cp,Bt~, cp,Bt~) 
'=1 

n 

= - 26 II cp,B t ; 112. 
1=1 

A Similar, but more explicit, form is a model of a 
displaced harmonic oscillator interacting with an ab
sorptive particle detector, which is given in the 
following. 

Example 3. Let X ={e} and 

H ={ {l/JJ='o; l/JE <C and Ill/JII ={~ IlJ!n 12 }1I2 < oo}. 

Let D" be the space of sequences in H such that the 
norm 

IIIJ! II" = sup{ Il/Jn I exp(na)} 
n 

is finite. Define 

0(>0 

Let w, IJ. be positive numbers, Zo an arbitrary complex 
number, and a*, a the creation and annihilation opera
tors on H. Then, the quantum stochastic process can 
be constructed1 on Ts(H) by using the formal 
Ham iltonian 

1 -
H = wa*a - - (Zoa + Zoa*) 

v'2W 
and the stochastic kernel 
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f)(e,p)=lJ.apa*, 

so that 

Z = - iH - tlJ.a*a. 

Hence, the total interaction rate R = lJ.a*a. Therefore, 
the master equation is 

d 
dt T[St(p)]=- T[lJ.a*aSt(p)]. 

In particular, we are interested in the master equa
tion for coherent states; i. e., for every z E <C, IJ!(z) E H 
with 1Il/J(z)1I = 1 such that 

zn 
l/Jn(z)=exp(-lzI2/2) !":T. 

vn' 

l/J(z) lies inD and a{l/J(z)}=zl/J(z). States of the form 
p = IJ!(z) 0l/J(z) are called pure coherent states, Hence, 
for pure coherent states, 

For pure coherent states, we have, 1 

Bt{l/J(z)} = A(t)¢{Z(t)} 

for all t?- 0, where A(t) and z(t) are two complex-valued 
functions of t?- 0 satisfying 

:t {A(t) exp[ I z (t) I 2j2]l/J{z (t)}}=Z{A(t) exp[ I z (t) 12/2 ]1J!{z (t)l 

and subj ect to the initial conditions z (0) = z, A(O) = 1. 
Then, 

:t T[St(p») = - T[lJ.a*a(A(t)l/J{Z(t)}) 0 (A(t)IJ!{Z(t)})] 

= -IJ.I A(t) 12 II al/J{z (t)} II 2 

= -IJ.I A(t) 1
2 Iz(t) 12 II l/J{z(t)} 11 2, 

In particular, at t=O, the right-hand side of the above 
equations is - IJ.lz j 211l/J(z)1I 2 = - IJ.lz 12. 
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APPENDIX 

We shall show in this appendix that A(a.ij) in Eq. (3), 
under a certain assumptions, is the infinitesmal gen
erator of a unique contraction semigroup on V. First 
of all, let a. <: X t, a.' <: X., and p E V, then 

= lims -1[[ s+t{A(a.' X a.), p) - t t(~, p)]. 
8'0 

On the other hand, 

[t{a.,A(a.o)p) =[ t(a., lims-1[t .(a.', p) - p]) 
.'0 

= lims-1[[ t(a., [.(a., p)) - [ t(a., p») 
"0 

=lims-1[t t+s(A(a.Xa.'), p) - [t(a.,p)] . 
• '0 
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Consequently, 

A{~)[t{.1,p)"'[t(.1,A(~)p). (Al) 

Next, without loss of generality, we may assume 
T( p] '" 1 in the sequel. Then, T[[ t(.1, p)] ~ T[[ teXt, p)] 
'" T(p] '" 1 for p E V and .1f:Xto and since [t{.1, p) E V, 
we have lit t(.1,p)1I ~ lI[t(.1,p)1I 1 '" T([t{.1,p)] ~ 1. 

Hence, for n> 0, we may define formally an operator 
Rn{.1) on V: 

Rn{.1)p '" 10 ~ exp(- nt)[ t(.1, p) dt with II Rn(.1o) II ~ lin. 

(A2) 
It is noted that (A2) can be defined more rigorously by 
means of the infinitesmal generators of quantum 
stochastic process1; however, the present form is suf
ficient for our purpose. Now, for .1' f: X., 

S-l[[ .(.1', Rn(.1)p) - Rn{.1)P] 

'" S-l[[ .(.1', 10 ~ exp{- nt)[ t(.1, p) dt) 

- 10 ~ exp(- nt)[ t(.1, p) dt] 

'" s-l[ 10 ~ exp(- nt)[ .+t(A(.1' X .1), p) dt 

- 10~ exp(-nt)[t(.1,p)dt]. 

By considering A(.1' X.1) ",.1" as a Borel subset in X.,to 
we may change veriable s + t in the first integral; and 
separate the second integral into fo~ + f.~: 

- S-l 10· exp(- nt)[ t(.1, p) dt + s-l 10 ~ [exp(- net - s»[ t(.1", p) 

- exp(- nt)[ t(.1, p)]dt. 

If t - [t(.1, p) is continuous, then the first term tends 
to -[o(.1o,p) as s+ O. Moreover, we note that.1" ~ .1 as 
s + 0, hence [t(.1", p) - [t(.1, p). Therefore, the second 
integral can be rearranged formally as follows: 

s-l /.00 [exp(ns) -1] exp(- nt)[ t{.1,p)dt 

exp(ns) - 1 [f ~ 
'" s 0 exp(-nt)[t(.1,p)dt 

-i~ exp{- nt)[ t(.1,p)dt ] 

= exp(:s) - 1 [Rn(.1)P - foB exp(- nt)[ t{.1, p) dt]' 

which approaches to nRn(.1)p as s + 0, since the second 
term tends to O. Therefore, we have 

A(~)Rn(.1)p = - [0(.10, p) + nRn{.1)p 

for p E V. 

On the other hand, 

Rn(.1)A(.1o)p '" 10 00 exp(- nt)[ t(.1,A(~)p)dt 

(A3) 

"'10~exp(-nt)A(.1o)[t(.1,p)dt [by (Al)] 

"'A(.1O) 10
00 

exp(- nt)[ t(.1, p) dt 

=A(~)Rn(.1)p 

Therefore, 

thus, 
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(A4) 

By the continuity of [t(.1, p) in t, lit t(.1, p) - [0(.10, p)1I 
- 0 at t + O. Hence, for any € > 0, we can choose a Ii> 0 
such that 

(A5) 

for O~ t~ Ii. We have 

nRn(.1)p - [0(.10, p) = n 10 ~ exp(- nt)[[ t(.1, p) - [0(.10, p)] G 

where we have used a fact fo ~ n exp(- nt) dt '" 1. Then, 

II nRn(.1)p - [0(.10, p) II ~ n 10 ~ exp(- nt) II[ t(.1, p) - [0(.10, p) II 
",n1

0
6 +n16~ =11 +12, 

where Ii> O. By (A5), for 0 ~ t ~ Ii, 

11 ~ in 106 exp(- nt) dt ~ En 10
00 

exp{- nt) dt = E. 

For a fixed Ii> 0, by lI[t(.1,p) -[o(.1o,p)1I ~ 2 for t"'- 0, 
we have 

12 ~ 2n Is 00 exp(- nt) dt = 2 exp(- nli) 

which tends to zero as n - 00. Therefore, we have 
established 

limnRn(.1)p =[ 0{.10, p) 
n~oo 

for p E V. In particular, if 

[o(.1o,p)=p, pEV. 

(A6) 

(A7) 

Then (A6) becomes limn ~~ nRn(.1) = p for all p E V. And, 
by (A3), Rn(.1)p ED(A(.1O)); therefore, D (A(~» is dense 
in V. 

Now, let p",ED(A(~», limn~~p",=PEV, and 
lim",~ooA(~)p", = p' E V. We define CP'" = (I - A (.1O))p "'; 
then lim", ~oo cP '" = p - p'. And, by the continuity of 
(I - A (~»"t, 

p = lim P'" = lim (I - A(.10))"lcp", = (I - A(.1O))-l{p - p'); 
Q:~ao Q"ao 

hence, (I - A(~»p = p - p'. This implies A (.1o)p = p'. 
Moreover, if (A7) holds, then, by (A4) and (A6), 
p ED (A{~». Consequently, A(.1o) is a closed operator 
on V. 

Therefore, we have shown that if [t(.1, p) is continu
ous in t and (A7) holds, then A(~) is a closed, densely 
defined operator on V, and for n> 0, n is in the 
resolvent set of A(.1o) with II (nI - A (.10))-111 ~ 1/n. Thus, 
by Hill- Yosida's theorem, 5 A(.1o) is the infinitesimal 
generator of a unique contraction semigroup on V. 
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Semisimple graded Lie algebras 'It 
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The concept of metric is introduced for graded Lie algebras. Semisimple graded Lie algebras are defined in 
terms of metric conditions of nonsingularity. It is shown that for this class of algebras the metric tensor 
generates a quadratic Casimir operator. Also for this class, the grading representation is irreducible and its 
weights are related to the roots of the Lie algebra ("root-weight theorem"). The problem is solved to find 
all semisimple graded Lie algebras. For SU(N), N> 2, for O(N), N> 5, and for all exceptional groups 
there are none. For ali other semisimple Lie algebras there is one and only one. These are explicity 
constructed m terms of a convenient realization of Sp(2 N) matrices. SU(2) is discussed in some detail and 
a new group [GSU(2)] is found which leaves a mixed c-numberl q-number quadratic form invariant. We 
also define irreducible tensor operators for this group. SU(N), N> 2, provides examples of nonsemisimple 
gradmgs. 

1. INTRODUCTION 

A graded Lie algebra is an algebra which involves 
both commutators and anticommutators. Such an 
algebra is of the following general form: 

[Qm, Qn] = f~nQp, (1. 1) 

(1. 2) 

{v"" Vs} = A':.:BQm' (1.3) 

[ ] and { } denote commutator and anticommutator re
spectively. The Qm by themselves generate a Lie 
algebra with structure constants ft.n. Note that in ob
vious matrix notation 

(1. 4) 

where t denotes the transposed. 

Algebras of this kind have made their appearance in 
several contexts. 1 In physics, they were first used in 
connection with questions related to second quantiza
tion of fermion systems. 2 They appeared again in the 
dual model studies by Ramond3 and by Neveu and 
Schwarz. 4 In turn, this inspiredWess and Zumino5 to 
employ such an algebra in connection with what is now 
called supersymmetry, a subject which was subsequent
ly elaborated further by them and by a number of other 
authors. 6 In many of these instances the algebra is 
Abelian in the sense that fti = 0, Ft" = O. For example, 
for (global) supersymmetries the Q's are the space
time translation operators. 

It is the purpose of this paper to derive a number of 
results which bear on the non-Abelian case. Our 
original motivation for this work was to find possible 
alternative ways to incorporate internal symmetries in
to supersymmetry considerations. This did not lead us 
anywhere. However, during these studies we discovered 
that these non-Abelian structure are remarkably tight 
and fairly elegant. This leads us to believe that the com
munication of these mathematical results may be of 
some interest in its own right. 

Along with the Jacobi identity 

these graded algebras contain two related identities, 
namely, 

2062 Journal of Mathematical Physics, Vol. 16, No. 10, October 1975 

[Qm,{V"" VB}]+{[V""Qm], VJ+}[Ve, Qm], V,,}=O, (1.6) 

[V""{Vs, v"}]+[Vy,{V",, VJ]+[Vs,{Vy, V"'}] =0. (1. 7) 

Note that Eqs. (1. 6), (1. 7) are trivial in the Abelian 
case. On the other hand, they are the main origin for 
the strongly constrained character of the non-Abelian 
graded algebras, as we shall see in the sequel. With 
the help of Eqs. (1.1)-(1. 3) these two identities can be 
written as follows: 

Am Fn + F;,A m = fn"j,AP (1. 8) 

(where we have used matrix notation7), and 

(1. 9) 

Our own curiosity in this area of problems was 
aroused initially by a study of SU(2), which led to re
sults which to us were surprising. Since this example 
is elementary and instructive, we think it helpful to 
begin our expose with a detailed discussion of this case 
in Sec. 2. 

There we note that if V'" is irredUCible, there is one 
and only one possible choice for it, namely the two
dimensional spinor representation. We then find that 
the graded SU(2) algebra has a quadratic Casimir 
operator K2 given by 

K 2 =-Qi-V t C-1v. (1.10) 

Here Q~ is, of course, the angular momentum. C = i 72 

is the familiar 2x2 "charge conjugation matrix." Gen
erally, for any group, we define a Casimir operator K 
for a graded algebra by the conditions that 

(1. 11) 

shall be nontrivially satisfied. We shall see in Sec. 2 
that the existence of the quadratic K, Eq. (1. 10), is 
important for proving the full reducibility of the rep
resentations. The latter turn out to be fully labeled by 
J, I, 13, where I, 13 are the familiar angular moment
um labels, while for an irreducible representation 
I=J or J - t. We prove that the Schur lemma holds and 
construct the Clebsch-Gordan series for this algebra. 
Finally we make the transition from this algebra to a 
corresponding new group which we call GSU(2). It turns 
out that this group is defined as the set of linear trans
formations which leaves invariant a specific bilinear 
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form [see Eq. (2.19) below]. We define tensor operators 
for GSU(2) and check the existence of a Wigner-Eckart 
theorem for an example. 

Thereupon, we made forays into other Lie groups and 
their gradings, but soon we came to the realization that 
we needed some organizing principle to systematize our 
explorations. This led us to introduce the notion of 
semisimplicity for graded Lie algebras. As we shall 
show in Sec. 3, there exists a quite natural definition 
of a metric tensor for a graded Lie algebra. This 
tensor acts in a manifold of D +d dimensions, where D 
is the dimension of the Lie group and d the dimension 
of Va. The precise definition of this tensor gjJ.,n !l,ll 
=l, ... ,D+disgiveninEqs. (3.7), (3.8) below. Along 
with g jJ.V, it is convenient to introduce also the familiar 
metric tensor hmn of the underlying Lie algebra: 

(1. 12) 

where all indices run over the range 1, ... ,D. Let us 
now consider four classes of graded Lie algebras, de
fined as follows: 

(I) det Ig "V I * 0, det I hmn I * O. We shall refer to a 
member of this class as a semisimple graded Lie 
algebra. It is the main result of this paper that we have 
found all semisimple graded Lie algebras. 

(II) detlgjJ.vl =0, detlhmnl *0. Here the question is: 
Can an SSLA 8 be graded in such a way that the resulting 
SSG LA is not semisimple? This is indeed possible and 
examples will be given (Sec. 6). However, we have not 
found a way to classify exhaustively algebras of this 
kind. 

(III) det ig jJ.V i = 0, det I hmn I = O. Here we enter the 
domain of non-SSLA. Examples of this type of grading 
can easily be given (Appendix B). 

(IV) det Ig/LV I * 0, det I h mn I = O. We have found neither 
an example for this category nor a general argument 
that such cases do not exist. Therefore, it remains an 
unresolved question at this time whether it would or 
would not be sufficient to specify an SSGLA by the con
dition det \g /LV \ *- 0 only. 

Section 3 is devoted to the development of a number 
of theorems which greatly facilitate the task of finding 
all SSGLA. The main findings of that section are as 
follows. 

(a) For each SSGLA there exists a quadratic Casimir 
operator K 2• The relevance of this result for full re
ducibility of GSU(2) has already been mentioned. We 
conjecture that full reducibility holds for any SSGLA. 

(b) For each SSGLA, Va is an irreducible representa
tion of the corresponding SSLA. 

(c) The C-theorem: For each SSGLA there exists 
necessarily a matrix C such that 

Ak=CFk and Ct=_C. (1. 13) 

The C-matrix enters in K 2• Indeed, in a coordinate sys
tem in which the SSLA metric tensor is the unit matrix, 
K2 is of the form given by Eq. (1. 10). 

(d) The root-weight theorem: Using the Cartan basis, 
let a denote generically any of the root vectors of the 
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SSLA. Likewise let 0' denote any of the weight vectors 
of the Va-representation. The theorem says that for 
any SSGLA there should necessarily exist for each 0' 

a corresponding a such that 

a = 20'. (1. 14) 

From this theorem we further derive the relation 

(1. 15) 

where c2(A) is the value of the quadratic Casimir opera
tor in the adjoint representation of the SSLA and c2 (V) 
is the same quantity for the grading representation Va. 
In Eq. (1. 15) the norms of the generators are relevant. 
Equation (1. 15) holds for the norms used by Racah, 9 

The C-theorem and the root-weight theorem are 
necessary conditions for semisimple grading. They are 
not sufficient conditions. Even so, these theorems are 
powerful, since they enable us to exclude vast numbers 
of options for Va, for any SSLA. Indeed, with their 
help we show the following in Sec. 4: 

(1) For any SU(N), N", 3, semisimple grading is 
impossible. 

(2) The same is true for all exceptional Lie algebras. 

(3) The same is true for all orthogonal groups D(N), 
N'" 6. For each of the cases N = 3,4, 5 there is one and 
only one semisimple grading candidate, namely the 
corresponding spinor representation. 

(4) For each Sp(2N) there is again one and only one 
such candidate, namely the fundamental 2N-dimensional 
representation. From well-known local isomorphisms, 
the possible SS gradability of 0(3), 0(4), 0(5) is, of 
course, linked to the same property of Sp(2) and Sp(4). 

The derivations in Sec. 4 were facilitated enormously 
by the work of Mehta and Srivastava10 who have given 
for each semisimple Lie algebra: (a) the dominant 
weights and the root vectors, (b) the representations for 
which C t = - E. 

Having recognized that there are only a limited num
ber of possibilities left, we have the remaining task to 
verify whether these cases are actually realizable. Here 
the answer is affirmative. The explicit constructive 
proofs for these instances are given in Sec. 5. For this 
purpose we give a very convenient representation for 
symplectic matrices, see Eq. (5,10). Gradability for 
the groups just mentioned also applies to their noncom
pact versions. Thus for example the Lorentz group is 
gradable. 

In Sec, 6 we discuss an interesting family of examples 
where grading is possible, but not in a semisimple 
fashion. Namely, the cases considered have the prop
erty that the metric tensor of the graded algebra 
vanishes (so that a fortiori its determinant is zero). 
These examples are SU(N), N? 3, where grading can be 
implemented with VOl = the adjoint representation, 

Here we note that there has been recent discussion l1 

elsewhere of graded Lie algebras, including comments 
on symplectic and Clifford algebras and on the grading 
just mentioned of SU(N). 

Finally, we list in Sec. 7 some major questions which 
deserve further study. 
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2. GSU(2) 
A. Irreducible representations of the algebra 

Let Qm (m = 1,2,3) be the generators of the SU(2) 
algebra: 

(2. 1) 

This algebra can be graded using a spinor V" (a = i, - t) 
as a grading representation: 

[Qm, V"'] = ha":.va, 

{V"" Ve.r=t(C7
m

)"'8Qm, 

where 

(2.2) 

(2.3) 

o 1 
1 0 

o - i 
0' 73= 

1 0 0 1 
o -1 ' C= -1 0 

(2.4) 

The commutation relations (2.1), (2.2) and the anti
commutation relations (2.3) satisfy the identities (1. 6), 
(1. 7), as can easily be checked. 

We define 

(2.5) 

With the help of the generators Qt and Q3, the relation 
(2.3) reads 

Vi12=tQ+, V:ll2=-tQ-, {V1I2' V_ld=-tQ3• (2.6) 

One observes that the square of each odd generator (V",) 
is equal to an even generator (Qt). As will be shown in 
Sec. 3, this property generalizes for any SSGLA. 

We now ask for a matrix representation of the Q m and 
V" which satisfies the relations (2.1)- (2.3). For the 
generators Qm we have 

(1,13 + 11 Q+ I I, 13) = ,j(I - 13)(1 + 13 + 1 ), 

(I, 13 - 11 Q _I I, 13) = ,j (I + 13) (I - 13 + 1), 

(1,131 Q3il, 13) = 13, 

(2.7) 

For the generators V'" we get from the Wigner- Eckart 
theorem 

(1 + i, 13 + t I v 1I2 1 I, 13) = c (1),j I + 13 + 1, 

(1 - t, 13 + t I V 1121 1,13> = d (1),;y:::y; , 

(I + i, 13 - tl V_1I2 11,13) =c(1) ,jI - 13+ 1, 

(1 - t,13 - tl v_wi I, 13) = - d(1)v'I + 13 , 

Here c(1) and d(1) are as yet unknown functions. In
troducing the expressions (2.7) and (2.8) into (2.6), 
we find the following equations for them: 

c(I - t)d(1) + c(1)d(I + i) = t 
c(1)c(I + t) = 0, 

d (1)d (I - i) = o. 

(2.8) 

(2.9) 

From Eqs. (2.9) we conclude that an irreducible rep
resentation of the algebra GSU(2) contains a doublet: 
one representation with spin I =J and another one with 
spin 1= J - t and that the solution of Eqs. (2.9) is (with 
a convenient choice of phases) 

c(J)=O, c(J-t)=-i, 

d(J) = - t d(J - t) = o. 
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(2.10) 

We will show later that J is related to the eigenvalues of 
the quadratic Casimir operator and that J labels the IR 
of the GSU(2) algebra. Within a given representation the 
states are labelled by I and Ia. We thus write these 
states as IJ,1,I3). The matrix elements of the genera
tors V" can then be written as 

(J,J - t,13+t I Vl12 IJ,J, 13 ) =-t~, 

(J,J,13+tlv1I2 IJ ,J- t,13) =- tM+I3+t, 

(J,J - t,13 - tl V_1I2 IJ,J,I3) = tM +13, 

(J,J,13 - tl v_l12 IJ ,J - t,13) =- tM - 13+ t· 

(2.11) 

The matrix elements of the generators Qm are given by 
Eq. (2.7) withI=JandI=J-i, J=O,t,l,···. 

The adjoint representation corresponds to J = 1. For 
this representation we easily derive from Eq. (2.11) 

(V,,)m,a=t(C7 m)aa, (Va)ll,m=- h;'", 

(Va)BY = (Va)mn = O. 
(2.12) 

The quadratic Casimir operator for the GSU(2) algebra 
is: 

(2.13) 

Indeed, using (2.1)-(2.3), one can check that 

[K2' Qm] = [K2, V,,] = O. (2.14) 

From Eqs. (2.7) and (2.11) we can derive the 
relation 

(J,1,13IK2IJ,1,13) =J(J d). (2.15) 

Thus the eigenvalues of K2 are related to J. Since we 
have proven that the IR of the GSU(2) algebra are 
labelled with the help of only one Casimir operator we 
can repeat Racah's9 proof of the total reducibility of the 
representations of SU(2) to show the total reducibility 
of the representations of GSU(2). This we do next. 

If the representation is reducible and has for example 
two irreducible constituents, the generators may be 
brought to the form 

(2.16) 

Let us assume for example that the Casimir operator 
K2 has different eigenvalues say :\(il * A (2 l for the two 
IR: 

(
A<1ln K \ 

K 2 = 0 A(2ln)' (2. 17) 

where K is some matrix. The transformation 

T=(~ K/(A(~_A(2l») (2.18) 

diagonalizes K2 and Qm, Va since they commute with K 2: 

(
A (iln 0 \ 

TK2T-l = 0 A (2ln)' 

Finally we show the equivalent of the Schur lemma: 
Let J be an irreducible representation of the GSU(2) 
algebra and Qm, V" the generators acting on this 
representation. Then any matrix A which commutes with 
Qm and Va is a multiple of the unit matrix. 

Proof: We choose the basis as in Eq. (2.11). In this 
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basis the generators are 

_ (Q~ I 0 \ I _ ( 0, V~' J -1/2) 
Q",- 0 Q~-I/2}' V",- V~-1/2.J, 0 ' 

where Q~, (Q~-1/2) are the matrices corresponding to 
Qm acting on the J(J - t) irreducible representation of the 
SU(2) algebra; the meaning of V~' J-l /2, v~-1/2, J is ob
vious. From the condition [A, Q",] = 0 and the application 
of the Schur lemma to SU(2) we have 

A=(\I1 J.Lo(1), 

where ~ and J.L are numbers. We now use [A, V",] = 0 and 
get ~=J.L, which proves the lemma. 

B. The group GSU(2) 

We consider next the group GSU(2), defined as the set 
of all linear transformations which leave invariant the 
quadratic form 

(2. 19) 

Here the x"" m =1, 2, 3, are c-numbers, but the y"" 
a = 1,2, are a pair of anticommuting variables, 

(2.20) 

Since several novel features are involved in the con
struction of the group elements, we shall proceed step
wise toward the general answer. 

Step 1: We collect the x", and Ya into a five-component 
quantity Z,,: 

Z"=(xm,y,,,), J.L=1, ..• ,5, 

and consider the transformation 

Z> Zv(T(8»"v, 

where 
T(8) = exp (8", Va). 

(2. 21) 

(2. 22) 

(2.23) 

In Eq. (2.23), the quantities 8", are the "fundamental 
parameters," a pair of anticommuting objects: 

{o"" oJ= O. (2.24) 

Moreover, we postulate that 

{O""yJ={O'>t VJ=O. (2.25) 

The J.Lv-matrix elements of T(8) are fully specified by 
(V"),,v' In turn, the latter are given by Eq. (2. 12). 
After some algebra, one sees that Eq. (2. 22) can be 
written in the following long- hand form: 

x' = (1- iC"B80/O/l)X- t(Cr)"/l8"'YB' 

y~ ~ (1 + is Cyt;8y8o)Ya - t(TXL.BOB, 
(2.26) 

and it is readily verified that Eq. (2. 22), or equivalently 
Eq. (2.26), leaves Eq. (2.19) invariant. Observe that 
because of the anticommutation properties, Eqs. (2. 24) 
and (2. 25), the order of the Z and the T factor on the 
rhs of Eq. (2. 22) is essential. 

We conclude this first step by noting the connection, 
similar to what happens for ordinary Lie groups, be
tween the generators V and derivatives involving the 
T transformation: 

(2. 27) 

Because of anticommutativities this second derivative 
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needs further specification. The rules are: If {u, v} = 0, 
then 

:u(UV)=v, :v(UV)=-U, a::vf(U,V)= :u(:vf(U,v~. 
step 2: From the single transformation T(8) we derive 

next a continuum of transformations which leave Eq. 
(2.19) invariant, in the following way. Consider the set 
Aa defined by 

A=D8, (2.28) 

where D is any arbitrary 2 X2 complex valued c-number 
matrix. Clearly A satisfies the same relations (2. 24) 
and (2.25) as does 8. Note also that {A"" OJ= O. From 
the foregoing it is obvious that all transformations 
Z~ = Zv(T(A»"v also leave Eq. (2.19) invariant. We 
next make the following comments. 

(1) Since the set of D matrices occurring in Eq. 
(2.28) includes the null matrix, we can define a unit 
element: 

T(O) = 1. (2.29) 

(2) We must ask how the product T(A')T(A) acts. One 
finds 

(2.30) 

in which now the SU(2) generators Qk make their ap
pearance: The product of two T transformations is in 
general a T transformation times a rotation. However, 
if A' = const· A, then A tCrkA' = 0 and in particular 

T(- A)T(A) = 1, (2.31) 

so that we have a well-defined inverse of T(A). 

Note that because of Eq. (2.28), we can write 

8tCrkAQk = 13kOI °2Qk, (2.32) 

where the complex numbers 13k are given by 

f31=DI2 +D21 , f32=i(DI2-D2j), 13a=Dl1 -D22• 

Equation (2.32) draws our attention to the fact that the 
parameters associated with Qk may in general contain 
two parts (both even in the 8's): one which is indepen
dent of the 8's and one which is proportional to 8182, 

step 3: We are now ready to write down the most gen
eral transformation which leaves Eq. (2.19) invariant. 
It is given by 

Z~ = Zv(exp(A", V",). exp(y",Q",»"v 

'" Zv(T(DO) exp[ (am + (:3m8t82)8m])om (2.33) 

where D has been described above. The am are pure 
imaginary. They are, of course, the pure SU(2) trans
formations. The 13m are complex. 

The additional labor to show that these transforma
tions form a group goes by routine steps. One formally 
expands the various exponentials and makes reductions 
with the help of the relations Eqs. (2. 1)- (2.3). The 
group GSU(2) is the first example, as far as we know, 
of a non-Abelian graded group in the sense of Berezin 
and Kac. 2 

The quadratic form (2.19) is also left invariant by a 
new type of parity operation (we call it "S" parity) 
which corresponds to the transformation 
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x-x, Ya--Ya, (2.34) 

in which the anticommuting variables change sign. As 
seen from (2.33) this corresponds to an outer auto
morphism of the group GSU2• 

From Eq. (2. 34) we derive 

SQms-1 = Qm, SVaS-l = - V 0" 

S2 =1 

(2.35) 

(2.36) 

It is easy to show that for IR of GSU(2), the operator S 
has the expression 

where 

W=C"8 V"V8 

and 

S\J,J,I3)= \J,J,I3), 

S\J,J-t,I3)=-\J,J-t,I3)' 

(2.31) 

(2.38) 

Thus the IR of the group GSU(2) are also IR of the union 
of this group with the S-parity operation. 

C. Tensor operators 

The Clebsch-Gordan series for the product of two 
representations of the algebra (2.1)-(2.3) reads: 

J "9J' '= \J - J' \, \J - J' \ + t, .. . ,J +J' - t, J +J'. 

(2.39) 

We do not give the general proof of Eq. (2.39), but we 
will illustrate presently not only how Eq. (2.39) works 
for the simple example 

(2.40) 

but also the Clebsch-Gordan coefficients for this case 
will be given. 

We define irreducible tensors T~ IS by the following 
commutation and anticommutation relations: 

[Qm, Ti 1)=6 (J,I,I3IQm\J,I,Is)Ti I', , 13 • 3 

[V"' T~,13]=<J,J- t,Is+a! V"IJ,J,Is)T~_1/2,ls+c" (2.41) 

{Va, T~_lI2, IS}=(J, J, IS + a \ V" \J, J - i, Is)T~, I
S
+'" 

We conjecture that an analog of the Wigner-Eckart 
theorem holds true, namely 

(JII. 1" • IiI T~: 13\ J, I, Is) 

- (J" II TJ' II J)C J", 1",11f 
- J, 1,13; j', r, 13" (2.42) 

On the right-hand side of Eq. (2.42), the first term 
represents the reduced matrix element and the second 
one the Clebsch-Gordan coefficient. We have not given 
a general proof of Eq. (2.42), but we have Checked its 
validity for the following example. 

Let us take J = ~ in (2.41). With the help of Eqs. (2.7) 
and (2. 11) one obtains 

[Q •• T}~LI2]=[Q*, T~:n=[Qs, T~:n==[Q_, TU~, _1/2]=0, 

[Q", Tl~t~l/2]== Tl~L1I2' [Qs, TUt"ll2]=± ~Tl~t"1/2' 
(2.43) 
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[V.1I2• THL.t/2] =0, [V.1/2' THt~1/2]='f tT~02, 

{V. 1I2 , T~:02} = - tTHt.1 /2' 

(2.44) 

(2.45) 

Equations (2.43)-(2.45) have been solved, and we have 
verified that they have the structure as in Eq. (2.42). 
By further imposing the orthonormality relations, we 
have determined the Clebsch-Gordan coefficients as 
follows: 

C .. 112, J +1/2,13·1/2 - c ';J ±]. + 1 
J,J,IS;1/2,l/Z,.1I2 - 1 3 , 

ct~~M: :~~l ~t 112.*1/2 =CtVJ ± Is + t 
CJ +t12• Ji 13 -c 

J, J, 13; /2,0,0 - it 

CJ -112, J -112,13.1/2 - ± c ';J 'f]. 
J, J,/3; 1/2.1 IZ,.1/2 - 2 s, 

ct~~r/tY3{ii\~l/2,.1I2 = ± C2 VJ 'f 13 - t, 
CJ-1I2, J -1/2,13 - C 

J,J-1/2,IS;1/2,O,O - 2, 

C J,J-1I2, 13*1/2 r;r='] 
J, J,IS; 1/2, 1 /2, zt 12 == ± CsY" 'f IS, 

C~: ~~[7*2:~;; 1/2, 1 12, *112 = CsY'-:J'--±-=]-s +-""'t, 

(2.46) 

C~:~: g;t /2,0,0 = - 2JC3, C~: ~:l~i: a; 112, 0,0 = (2J + 1)c3, 

where 

c j =± 1/./2J + 1, C2 =± 1/Y2.J, Cs =± 1/v'2J(2J + 1), 

(2.47) 
The entire discuss ion of this section was based on the 

choice of a spinor for the grading representation V. We 
must finally ask if there is any other possible choice 
for V. By following exactly the techniques outlined 
above, one readily finds that any irreducible SU(2) 
representation for V other than a spinor does not work. 
We have not pursued in all generality the possible use 
of reducible representations. However, for the specific 
class of semisimple graded Lie algebras, V has to be 
irreducible. We turn next to the derivation of general 
properties of this class of algebras. Our GSU(2) ex
ample discussed in the present section will soon be seen 
to belong to this class. 

3. A STANDARD FORM FOR SEMISIMPLE GRADED 
LI E ALGEBRAS 

The commutation and anticommutation relations 
(1.1)-(1. 3) and the identities Eqs. (1. 5)-(1. 7) can be 
cast in a more compact form as follows. 1,2 Let X,. 
comprise the sets of generators Q"" (m = 1, . , . ,D) and 
V" (a = 1, ... ,d): 

X,.=Qm, V,,, J..I.=1 •.•• ,D+d. 

Further, define the degree g(X,.) of a generator by 

g(Qm) = 0, g(Va) = 1. 

(3. 1) 

(3.2) 

If g = 0 (1), the corresponding operator will be called 
even (odd). Define (X,.,Xv) by 

(X".Xv)=X"Xv - (_1)I(X"ll(XvIX..x", 

Then Eqs. (1. 1)- (1. 3) can be comprised as 

(X",Xv) =c~..x",. 

The c-symbols satisfy 

c~v=- (_1)I(X"ll(XvlC :,.. 

Equations (1. 5)- (1. 7) are all contained in 
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We define a metric tensor g,,~ for the graded algebra 
by 

g "~=c~,,, (_1)8(Xw)c~~= (_1)'(X")8(X~)g~,,. (3.7) 

Equivalently [recall that hmn was defined in Eq. (1. 12)], 

gmn=h"'h- F!aFn~=gnm' 

gaB '" F':;..A~ - F':;aA~y = - gBa, (3.8) 

g".a=ga".=O. 

It is also useful to define a tensor c ,,~A by 

(3.9) 

From Eq. (3. 5), 

(3. 10) 

Making use of the identities (3.6), one can show (see 
Appendix A) that 

(3. 11) 

From Eqs. (3.10) and (3.11) we derive another "anti
symmetry" relation: 

(3.12) 

Definition: A graded Lie algebra is called semisimple 
if 

(3.13) 

For semisimple graded Lie algebras we can define a 
contravariant metric tensor g"" through the relation 

g"AgA~ '" 6~. 

Theorem: The operator 

K=g"~X"X~ =g"'nQ".Qn +gaBVa VB 

is a Casimir operator. 

Proof: 

[X;>., K] = «- 1)I(XA)<'(X,,).,(X~» -1)g"~X"X~A 

+ «- 1)8(XA)I(X" )g"~c~~ + ci.,~~)X "X~. 

(3.14) 

(3. 15) 

(3.16) 

Each of the two terms on the right-hand side of Eq. 
(3. 16) vaniShes separately, 

[(- l)'(X;>.) c.-(X,,).,.(X~)] _ l]g"~ = [(_ 1)21(x;>.)I(X,,) -1 ]g"~ 

=0, 

and, using Eq. (3.12), we have 

(-I)I(XA)I(X")g"~c~~+crv~~ 

= [(-1)8(x;>.)8(X,,)~vcvAT+cTw~~]g"T 

= [ _ (_ 1),(XA)I(X" ).'(X .. )I(XA).'(X~)I(XT)"'(XA),(XT). gl7V 

+~~]g"TcVAT 

= [- (- 1)1(X~)ft(XA)"'(X ,,).'(X~)] + 1]' ~ag"TcvAT = 0, 

since in C VAT there are always two odd operators or none 
and thus 

{g(X,,)[g(XA) +g(X ,,) +g(X.,.)] = {~ !~ ~~~:~: ~~ 
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The importance of the existence of the invariant 
quadratic form has been discussed in Sec. 1 and we 
have also seen in Sec. 2 in the example of the GSU(2) 
algebra that the existence of the Casimir operator 
(3.15) made it possible not only to classify the irre
ducible representations but also to prove the total 
reducibility of the representations. 

We will prove next several theorems which will 
enable us to make a classification of the semisimple 
graded algebras and to bring them to a standard form. 
In order to do so, we first write Eq. (1.1) in the 
standard Cartan basis: 

[HIoHJ]=O, i,j=l, ... ,l, 

[HhE,.] = alE,., 

[E,.,E .... ]= alHh 

[E,.,Eb]=N ... bE,.+b (a+b*O). 

(3.17) 

l is the rank of the algebra, HI are its center elements. 
The a , are the covariant roots, the al their contra
variant counterparts. E,., E I , ••• are the noncenter gen
erators. The connection between the al and the a l de
pends on a normalization convention which we will 
specify shortly. 

Next we write in the same basis some equations in-
volving the V's: 

[HI> V(a,r)] = OiIV(a,rlo 

[Ea, V(a,r)] = 6!.aM (/!,s), (a,r) V(/!,sJ. 

{V(a,rlo VI_a,s)} =A~a,r). (_a,s)H!. 

{V(a,rlo V(/!,S)}=6~.Bfi(a.r). (/!,.)E,. (Oi +tl*O). (3.18) 

The first two of these equations are a transcription of 
Eq. (1. 2). The Oi, are the weights. To a given weight 
there may correspond several V's. We express this by 
the degeneracy index r in V(a,r)' The second pair of 
Eqs. (3. 18) are a consequence of Eq. (1. 3) and of Eq. 
(1. 6) with Q". - HI' 

Theorem: If the graded Lie algebra is semisimple, 
then to each weight Oi of the grading representation V, 
there corresponds a weight - Oi. 

Proof: From (3.8) and (3.18) we have 

where 

f(a,r), (-a,s) =6 (A(_a,s). (a+a, OM(.+a, 0, (a.r) 
a,t 

- A(a,r), (a-a, 1)''\1(,._a, n, (-a.s» 

(3.19) 

(3.20) 

The condition of semisimplicity (3.13) implies that 
f( a, r), (-a,.)' O. Hence to each Q corresponds a weight Oi 

and for each (Oi, r) there exists at least one state 
(- Oi, s) such that f( a, r). (_a, s) does not vanish. 

The other elements of the metric tensor can also be 
computed, and we obtain (an i,j index refers to the 
H's, an a index refers to the E's); 

gil =~ a l aJ -"6 n(Oi)cxIOih (3.21) 
a Q 
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glo =0, 

gab = 6 ... -b(- 2a'a, +6 NacN-a,a+c 
c 

-a6 M(a+a,s), (a,r)M(a,r), (a+a,8»' ,",s 

(3.22) 

where n(a) denotes the multiplicity of the weight Q. We 
will choose our normalization such that 

gab = 6 ... _b• (3.23) 

We will implement the content of the identities (1. 5)-
(1. 7) in two stages. First we will impose the "anti
symmetry" constraints (3.11). Thereafter we will 
check the remaining constraints following from Eqs. 
(1. 5)- (1. 7). 

From Eq. (3. 11) we find 

This implies 

al =gual . 

Also from Eq. (3.11) we get 

ejJa = 0, 

Equation (3. 27) holds if 

Again from Eq. (3.11) 

Equation (3.29) holds if 

A l -f I (a,r), (-a,s) - (a,r), (_a,s)a • 

Once more from Eq. (3.11), 

Equation (3.31) holds if 

(3.24) 

(3. 25) 

(3. 26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

A(a,r), (8,s) = - f(a,r), (-a, t)M(_a, t), (8,&) (3. 32a) 

and 

f( a, r), (-a, OM(_a, 0, (8, s) = f(8, s), (-8, u)M(_8, u), (a, r)' (3. 32b) 

We now check the Jacobi identity (1. 5) according to 
which 

F (a) F("') - I ° (a,r), (a,s) - (a,r), (a,s) - - a 0'1 rs, (3.33) 

F (-a) F(-b) - N M 
(a,r), (a.,.-!>,s) - (a,r), (a.,.-b,&) - ab (o<,r),(o<.,.-!>,&lo 

where 

F~~r), (8,&) =6 M(o<,r), (a+a, OM(a+a, tl, (8,&). 
t 

(3.34) 

By using (3.30), (3.32)- (3.34), the identity Eq. (1. 6) 
is automatically satisfied. 

We turn now to the identities (1. 7). They have the 
following explicit expression in the Cartan basis: 

0a, _aOuta i.nf( a, r), (-a, s) + Oil, _yourf3
1 a If(1l, &), (-Il, t) 

+ Oy, _o<ousy
1
f3lf(y, n, (-y,r) 

- 6 f(a,r), (-a, V)M(_a, v), (Il, s)M( o<+a+r, U), (y, t) 
v 
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- 6 f(8, s), (-Il, v)M(_8, v), (y, OM(a+B+r, u), (0<, r) 
v 

- 6 fly, t), (_y,v)M(_y,v), (a,r)M(o<+8+Y,u), (Il,s) 
v 

=0. (3.35) 

It is from these last relations that we will obtain 
several theorems which will allow the classification of 
the semisimple graded algebras. In order to do so, we 
need the following lemma. 

Lemma: If A and B are two symmetric nXn matrices 
acting in an n-dimensional space and if 

Arjr2B sjs2 = 0rjSjOr2S2 + °Tj s20r2S j' 

r j , r2, 810 8 2 = 1,2, ... ,n, 

then the vector space is one-dimensional (n = 1). 

Proof: Assume A11 f. O. From (3.36) we get 

A11Bl1 =2, B SjS2 =0 for (8 j ,82)*(1,1). 

(3.36) 

Take (rio r 2) f. (1,1). Then none of the relations (3.36) 
can be satisfied which implies rj = r2 = 8 j = 82 = 1. 

Let us next define the inverse of the matrix 
f(o<, r), (-a, B): 

6fL-~:r), (a, nf(a, 0, (-a,s) = ors. 
t 

(3.37) 

Theorem: All the nonzero weights are simple. 

Proof: Take f3=y=- a in Eq. (3.36): 

0'1 a I (f(-a, 0, (a, r)Ous + f(-"" s), (a, T)OUt) 

=6 f(_a, s), (a,v)M("" v), (_"', OM(_"" u). (a,r)' 
v 

(3.38) 

Multiply this relation by f(<;;~), (-a, w) and sum over r: 

0'1 a I (OtwOu s+ 0swOt.) = 6 fe-a, s), (a, v)M( a, v), (-a, t) 
v 

. 6 M(_"".), (""rJ/;;;~), (-",w)' (3.39) 
T 

It follows from the lemma that the space (a, r) for 
given a is one-dimensional and Eq. (3.39) becomes 

(3.40) 

since we now can drop the index r in (0', r). 

Root-weight theorem: To each weight 0' corresponds a 
root a such that a = 20' and 

(3.41) 

Proof: From Eq. (3.40) it follows that M_""" f. O. But 

Hence a = - 20' exists and so does a = 20'. Let us con
sider the expression 

{Va, V",} = - f",.aM_a, aE2,,' 

Sincef",_"f.OandM_a,o<f.O, Eq. (3.41) results. 

(3.42) 

Lemma: If a is a root, ka (k integer) is a root only if 
k = ± 1. The proof is given elsewhere. j2 

Theorem: There are no zero weights in V". 

Proof: Let 0' be a weight. Then 

{V(O,s)' V",}=- f""_,,,1'11_a, (O,s)E",. 

But E 2", is a root so E '" cannot be a root. This implies 
M.a , (O,s) = O. We also have 
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Since 

{V(o •• J. V(o.r)}= [Hi, V(O •• )] = 0, 

we derive that [see Eq. (3.20)) 

/(0. r). (0.') = o. 
The theorem then follows from the requirement of semi
simplicity. Since all the weights are simple, we have 
the following obvious corollary: The grading represen
tation is irreducible. 

This is the central result of this section. Since the 
irreducible representations of the semisimple Lie alge
bras are classified, the problem of the classification of 
the semisimple graded Lie algebras has been reduced to 
a known one. 

We can now put the commutation relations (3.18) into 
a standard form: 

[Hio V,.]=O'IVOt' 

{VOt, V_Ot}=/a •• aO'IH" 

{Va, VJ=- BOt+s/Ot •• aM_""s 

where 

/ "" .OtM .01.8 = / B, .8''VCa, a, 

/a •• Ot = - /-Ot. a· 

GOing back to the notations of Sec. 1, we have 

(F m) 018 = F ::8' m = 1, ... ,D, 

where 

(FI)as = il 0180' I> 

(Fa) 018 = lI~aM 018. 
lf we define the matrix C though the relation 

C a8 =- 1I000._J",,_Ot, 
we have 

C = - C t
, (CFm) = (CFnl. 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3. 50) 

If we choose our coordinates such that giJ = 110, we al
so have 0'1 = 0'1 and from (3.43): 

(3. 51) 

We therefore have the C-theorem: For each SSGLA 
ther~ exists a matrix C which satisfies Eq. (3.50), 
(3. 51). 

A representation which is real and satisfies the con
dition (3. 50) is called a real negative representation10 

(a representation is called real positive if C = C t). 

We can now summarize our results as follOWS: The 
grading representation Of a SSGLA is irredudble, real 
negative and to each weight 0' corresponds a root a = 20'. 

4. IMPLICATIONS OF THE ROOT-WEIGHT THEOREM 

In the previous section we found two necessary condi
tions for a Lie algebra to be gradable. First, it must 
contain at least one irreducible representation which is 
real and negatvie (RNR). Secondly, if such a represen-
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tation exists then to each of its weights must correspond 
a root of the algebra which equals twice that weight. 

In this section we shall show that these two criteria 
suffice to rule out all the algebras SU(N), N> 2, all 
O(N), N> 5, and all the exceptional algebras as can
didates for gradability. We shall show further that for 
the symplectic algebras Sp(2N) there is one and only one 
candidate for the grading representation Vol' namely the 
fundamental 2N-dimensional representation. For 0(3), 
0(4), 0(5) there is also only one candidate, namely the 
spinor representation. Since the algebras of SU(2), 
0(3), and Sp(2) are isomorphic and have a common two
dimensional representation, since 0(4) is isomorphic to 
Sp(2) x Sp(2) with a shared four- dimensional representa
tion, and since the same is true for 0(5) and Sp(4), we 
conclude that only the algebras Sp(2N) are candidates for 
grading and that they are so in a unique way. In the next 
section we shall show that for these cases the grading 
can actually be implemented. 

In order to proceed, we make use of the results of 
Ref. 10. There it was shown for each SSLA which rep
resentations are real and negative. The same papers 
also contain expressions for the root vectors and the 
dominant weights in terms of an orthogonal basis. We 
shall see next that the results just mentioned are ob
tainable if we confine our attention to the highest weight 
only and seek for a corresponding root which satisfies 
our root-weight theorem. 

The highest weight M of an irreducible representation 
characterizes the representation and can be written in 
terms of l fundamental dominant weights IT J (l is the 
rank of the algebra) 

(4.1a) 

with nonnegative AI. The ITI are tabulated in Ref. 10. 

Thus we hope to find a set AI and a root a such that 

a=2M. (4.1b) 

The algebras A n•1 [SU(N)]: These contain RNR only if 
n = 4p + 2 and the Ai satisfy the conditions: 

AI = An-i (i = 1, ... ,n - 1), 

and An /2 is odd. 

(4.2) 

The roots can be expressed in terms of fundamental 
weights as follows: 

± a(j, k) = IT n ..... +1 - IT n ...... 2 - IT n_J+1 + ITn-J+2 + B1,jITh 

(l~j<k~n). (4.3) 

The conditions (4. 1) can be satisfied only if n = 2 when 

±a(1,2)=2IT1> 

when indeed A1 = 1 is odd. 

The algebras Bn [O(2n+1)] contain RNR only if 
n(n + 1)/2 is an odd number and if A1 * O. We define the 
vectors PI through the relations 

P1=II2, ... , Pn- 1 =II n, Pn=2II 1, 

and express the roots in terms of the PI: 

± a(±j) = PJ - PJ- 1, 
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(4. 5b) 

±a(±j, 'f k) = Pr P i - l - Pk + Pk - l • (4.5c) 

The conditions (4. 1) can be satisfied by the roots (4. 5a) 
only if n = 1, in which case 

± a(± 1) = 2II j. (4.6) 

The roots (4. 5b) check (4.1) only if n = 2 and then 

±a(±1,±2)=2IIj. (4.7) 

For both n = 1 and 2, Aj = 1 and n(n + 1)/2 is odd. 

The algebras Cn [Sp(2n)] contain RNR only if 
Aj + A3 + A5 + ... is odd. The roots are 

±a(±j) = 2(II j - Il i - 1), (4.8a) 

±a(±j,± k) =II j - II j _j +IIk - II k _b (4.8b) 

± a(±j, 'fk) =IIi - IIi-! - IIk + IIk _j • 

In this case 

± a (± 1) = 2II j. 

(4.8c) 

Thus Aj=l, A;=O (i=2, ... ,n), and A1+A3+A5+"'=Al 
is odd. The dimension of the representation having the 
highest weight III iSIO 2n. 

The algebras Dn (O(2n)]: We define the vectors P j in 
terms of the fundamental weights II j : 

P j =II j +2 (j=1, ... ,n-2), Pn_j =II I +II 2, P n =2II j. 

The roots are 

±a(±j, ±k) =Pj - P j - l +Pk - Pk - j , 

± a(±j, 'f k) = P j - P j - l - P k + Pk - j • 

(4.9) 

(4. lOa) 

(4. lOb) 

The conditions (4.1) are satisfied only for n=2, j =1, 
k = 2 in which case 

± a(± 1, ± 2) = 2II j. 

This implies Aj = 1, Ai = 0 (i = 2, ... , n) and thus Al + A2 
is odd. 

The algebras G2, F 4, E s, and E8: These have no RNR. 

The algebra E7: has 126 roots which can be expressed 
in terms of the fundamental weights. We verified that 
none of these roots satisfy the condition (4.1), and 
thus the algebra E 7 cannot be graded. 

We conclude this section with a further elaboration of 
Eq. (4.1b). In that equation M is the highest weight 
vector of the grading representation, as already noted. 
Furthermore, it is a consequence of our analysis of 
gradable algebras that the root vector a which appears 
in Eq. (4. Ib) is specifically the highest root vector. 
Let us then rewrite the vector relation Eq. (4. 1b) as 
follOWS. 

(4.11) 

where the subscripts A and V refer to the adjoint and 
the grading representation, respectively. We further 
observe that the (length)2 of Nly is given by 

(4.12) 

if we use the normalization conventions of Racah. 9 
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[Example: With the norms used here, we have for SU(2): 
Qm; 1m for the spinor representation.] 

Let C2(M) denote the eigenvalue of the quadratic 
Casimir operator for a representation with the highest 
weight M. Then~ 

cz(A!) = (M +R)2 _ R2, 

where the vector R is given by 

R=f;: 6a. 
a+ 

(4.13) 

Here a is a root and 2:a+ denotes summation over posi
tive roots only. We thus obtain 

c2(A) - c2(V)= (2My +R)2 - R2 - 2(My+R)2 +2R2 =2, 

which is the result stated in Eq. (1. 15). 

5. THE GRADING OF O(N), N = 3.4,5, AND OF Sp(2N) 

These are the groups which survived after the neces
sary conditions for grading were implemented in Secs. 
3 and 4. We shall now show that the grading of O(N), 
N = 3, 4,5, by spinor and of Sp(2l-l) by the fundamental 
representation is actually possible. As noted in Sec. 1, 
the orthogonal cases are linked to Sp(2) and Sp(4). 

We show that for the instances at hand the identities 
Eqs. (1. 8) and (1. 9) can be satisfied. We recopy these 
relations: 

AmFn+F:,Am =f/;N, 

AP,,;8F:,. +At",F:8 +A~yF:a = o. 
According to Eq. (3. 51), Ak is related to Fk by 

(5. 1) 

(5.2) 

AR =CFk = (CFk)t, C t =- C, (5.3) 

and C has an inverse. Furthermore, Eq. (5.3) corre
sponds to a metric where flk = fik; = - fiik' Then Eq. (5.3) 
inserted in Eq. (5. 1) yields 

(5.4) 

which is identically satisfied, in accordance with the 
general results of Sec. 3. 

We turn to Eq. (5.2). Let X~ be the most general 
d Xd matrix (d = dimension of the grading representa
tion). Then Eq. (5. 2) is valid if for any X 

(CFkX Fk) + (CFkXFk)t =- - (CFk)Tr(XFk). (5.5) 

Eq. (5. 5) has to be verified for a complete set of d2 

linearly independent matrices X. A subset thereof may 
be chosen to be the generators F; themselves. For this 
subset Eq. (5.5) becomes [use Eq. (5.3)] 

(5.6) 

Use Eq. (5.4) and recall thatfiik is the (jk)-matrix ele
ment of Fi inasfar as Fi acts on the adjoint representa
tion. Then Eq. (5.6) becomes 

(5. 7) 

c2(A) and C2(V) are the values of the quadratic Casimir 
in the adjoint representation and the V representation, 
respectively, of the semisimple (nongraded) Lie group. 

The groups Sp(2N): Sp(2N) is defined as the group 
which leaves invariant the form XiCij Y i' i,j = 1, ... ,2N, 
where C t = - C. The Xi and Yi are fundamental 2N-dimen-
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sional representations. C may be chosen to be in the 
canonical form 

(5.8) 

where T2 is the usual 2 x 2 Pauli matrix and "1" is a 
NXN unit matrix. We recall that the generators Fk 
inasfar as they act on the fundamental representation 
satisfy 

(5.9) 

A complete set of N(2N + 1) such matrices Fk can be 
constructed as follows. Let A" denote the set of NXN 
matrices corresponding to the SU(N) generators acting 
on a N-dimensional representation of that group. Divide 
this set of JVl. - 1 matrices into two subsets A~S) and A~a), 
where the superscripts (s) or (a) denote that the A" in 
question is symmetric or antisymmetric respectively. 
Then the collection of Fk matrices in Eq. (5.9) is 
easily seen to be given by 

(5. 10) 

For the present case the complete set of matrices X 
which enter into Eq. (5.5) is given by 

X: 101, T; 01, 10.;1.."" T j o A",. (5. 11) 

For definiteness, the A", are normed in such a way that 
for each pair XA,X S of X's 

(5. 12) 

The X-set contains the Fk as a subset. Let X A denote 
any X matrix not in this subset. One easily verifies that 

(5.13) 

We first verify Eq. (5.7). With our norm convention one 
finds13 C2(v) =N(2N + 1), C2(A) = 4N(N + 1). From this and 
from Eq. (5.12), Eq. (5.7) is seen to be satisfied. 

For any X A, the left-hand side of Eq. (5.5) vanishes 
because of Eq. (5.13), the antisymmetry of C, and the 
·symmetry of CFk • The right-hand side of Eq. (5.5) also 
vanishes because of Eq. (5.12). Thus all identities are 
satisfied. 

The groups 0(3), 0(4), 0(5): From Eq. (5.10) we see 
that SU(2) "'Sp(2). For Sp(4), Eq. (5.10) gives Ti 01, 
T; :81)1> Ti (1)3 and 1 (1)2, for the set of generators, 
where the 1); are a second set of Pauli matrices. These 
are the ten generators acting on an 0(5) spinor and 
satisfying the 0(5) algebra. For 0(4) one can take again 
Cd T2 :81. The set of generators is T;:81, T; (1)1 and 
for the X' one has the remaining ten Dirac matrices. 
The verification of the identities goes as before. 

Finally we note that the spinor representations of O(N) 
provide an illuminating example of the fact that the 
existence of a C matrix such that C t = - C, (CFk)t = (CFk ) 

is not sufficient to effect grading. Namely, it has been 
shown14 that for these spinor representations there does 
exist a C matrix with these properties for N = 3,4, 5, 6 
(mod 8). For all such cases one can proceed to construct 
a set of X matrices along similar lines as spelled out 
above. It can then be shown that Eq. (5. 7) leads to the 
constraint 
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N2_9N+16=-2[N/21, (5.14) 

where [X] is the entire part of X. This equation has as 
its only solutions N = 3,4, 5-as it should be, 

6. NONISEMISIMPLE GRADING: SU(N;, N>2 

These SU(N) groups provide examples of simple Lie 
algebras whose grading is nonsemisimple. To start 
with, consider any Lie algebra and ask whether it can 
be graded by its adjoint representation. In that case, 
the Fm in Eq. (1. 2) refer to the adjoint representation 
and 7 

(6.1) 

Then it follows from Eq. (3.8) that gmn=- O. Since gmo< 
and gom always vanish [see Eq. (3.8)], we have from 
Eq. (3.13): Any possible grading of a Lie algebra by its 
adjoint representation is necessarily nonsemisimple. 

Furthermore, for the adjoint representation we al
ways have 

(6.2) 

so that Eq. (1. 8) takes the form 

[Fn, Am] = - fn~AP = - fnp~P = fnmp!1p. (6.3) 

(Here we use the conventional metric. ) For any Lie 
algebra, Eq. (6.3) by itself is satisfied by Am = Fm, but 
this solution is unacceptable because Eq. (1. 4) con
flicts with Eq. (6. 2). It is at this point that we turn 
speCifically to the groups SU(N), N> 2. 

As is well known, for these groups there is a second 
solution to Eq. (6.3), namely 

(6.4) 

where d mkl is totally symmetric, so that Eq. (1. 4) is 
now satisfied. The d symbols are defined as follows. 
Let Ft"N) be the set of generators of SU(N) inasfar as 
they act on the fundamental representation (N). Then, 
for any N, 

{FtN"F/N)}=dIJkF(kN)+(l/N)5;J' (6.5) 

(Here, for definiteness, a normalization has been 
chosen such that Tr(F/N»2 = t for all N, fixed i). Note 
that diJk =- 0 for N = 2. 

Thus our system (1. 1)- (1. 3) now reads 

[Qm, Qn] =ft."Qp, 

[Q"" vnl =f~nVp, 
{Vm' V..}=dmnpQp. 

One easily verifies that Eq. (1. 7) is also satisfied, 
since 

(6.6) 

(6.7) 

Returning once more to Eq. (3. 8), we see that in the 
present case g ",a also vanishes, as follows from the 
relation F",D", = DmFm = O. Therefore, this grading is not 
only nonsemisimple, but we have the even more singular 
situation that the metric tensor gjLV vanishes identically. 

Of course, there is here no such theorem as the one 
related to Eq. (3.15). Yet there does exist a quadratic 
operator K2 which satisfies Eq. (1. 11), namely 
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K2 =Q~. 

Indeed, it is evident from Eq. (6.6) that (Q;', Qn] 
= [Q;', Vn] = O. Note also that v;, '" O. 

(6.8) 

As an example of an explicit representation of the 
algebra we merely mention the (2JV'l- 2)-dimensional 
representation 

(~/), (6.9) 

where both A and A' are (NZ -I)-dimensional adjoint 
representations. The realization of the operators Qm, V m 

is as follows for this case. 

Qm= (~m ;J, Vm=(:m ~m). (6.10) 

This is readily verified with the help of Eq. (6.7). 

7. FURTHER QUESTIONS 

It will be clear that a considerable amount of work 
still needs to be done in order to map fully the new struc
tures which have been uncovered in the foregoing. We 
conclude this paper by listing some questions which 
seem to us to be most interesting. 

1) As already stated in Sec. 1, one would like to 
know whether or not there exist graded Lie algebras 
with detlg .. vi *0, detlhmnl =0. 

2) For all GSp(2N) one ought to know whether the 
representations are fully reducible (we guess that they 
are). 

3) Related to the preceding question is the problem of 
the existence of Casimir operators K defined by Eq. 
(1. 11) which are of degree higher than two in the Qm 

and the V". 

4) A general proof of the Wigner-Eckart theorem is 
still outstanding, see Sec. 2. 

5) Just as we did for GSU(2), one should not only ex
amine the algebra of GSP(2N), N> 1, but also the cor
responding group structure. 

APPENDIX A 

We derive here Eq. (3.11). In order to do so, we 
write the identities (1. 5)- (1. 7) along with the Jacobi 
identities corresponding to the Lie algebra (1. 1): 

f~rf~ + f!mfn~ + f!nfr~ = 0, 

f~nFp6" - F,;"F!y + F:."F~y = 0, 

A~f'::p - F!yA~ - F~aA~ = 0, 

A~"fF:a + AtaFp6e + At;.BF:y = O. 

From Eq. (3. 9) we get 

C nrs = (/p"nf!m - F !"F :s)fr"'s, 

Cno<B = (f;nf:m - F~F!y)A:B' 

C ",rB = (F;~~ - FJr,A~",)F~B' 

To prove that 

Cnrs :::: - crns , 
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(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

we note that from Eq. (AI) we have 

f::'rfq~fts = - f:'nfq~f!8' 

Using Eq. (A2), we obtain 

(A9) 

(AlO) 

and 

(All) 

From (A5), (A9), and (All) we get (A8). 

We now prove 

(A12) 

From Eq. (A3) we have 

fp"n!t,,/t":,1! = F:~~f:n + F:aA:of!n, 

and from Eq. (A4) we obtain 

(A13) 

F:6F:yA~1! = - F;oA~Fpoa - F:oA~o<F:e. (A14) 

By using (A13) and (A14), Eq. (A5) becomes 

cn",e = F~F:~~"f+ F~A~",F:I!+!tnF:crA"oo+f:.A"r.6F:I!' (A15) 

From Eq. (A3) we get 

F;~~oF~B= F:~~f:" - F;o<F~yA~, (A16) 

and from Eq. (A2) we have 

A~"F;'F:B= F:aA?",F:ia +A~"fp"nF:B' (A17) 

By using (A16) and (A17), Eq. (A7) becomes 

c"nl!= - F:yF:~~ - F;oA~"Fp61!+f:"Fpy~~- J:.A~"F;B' 

(A18) 

Comparing (A15) with (A18) we obtain Eq. (A12). 

Equations (A8) and (A12) can be written in a compact 
form which is (3.11). 

APPENDIX B 

Examples of graded Lie algebras for which det Ig ltV I 
= det I hmn I = 0 are legion. The simplest example is ob
tained by a grading of U(l) XU(l). There are two gen
erators Y and Z, [Y, Z] = O. The grading representation 
is given by the pair V, W which satisfies 

[Y,V]=V, [Y,W]=-W, [Z,V]=[Z,W]=O, 

y2 = w2 =0, {V, W}=Z. 

It is obvious that the determinants of g ltV and of hmn 
vanish and that the Eqs. (1. 6) and (1. 7) are satisfied. 
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Transport equations for the Stokes parameters from 
Maxwell's equations in a random medium '* 
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Beginning with Maxwell's equations in a random medium and following a perturbation procedure. we 
obtain transport equations for the Stokes parameters. We compare our equation with Chandrasekhar's 
transport equation and find that they agree when the random medium is specialized appropriately. We also 
examine the role of degeneracy in the perturbation analysis. 

1. INTRODUCTION 

Our objective is to analyze the connection between 
radiative transport theory and the asymptotics of 
stochastic wave equations. One expects, from physical 
considerations, in the asymptotic limit of weakly in
homogeneous media with propagation over several cor
relation lengths and wavelengths small compared with 
the correlation length, that the appropriate way to de
scribe the transport of field energy is through transport 
theory. Beginning with Maxwell's equations in a random 
medium and by following a perturbation procedure for 
stochastic equations, we obtain transport equations for 
wave amplitudes (the Stokes parameters or the co
herence matrix) in the above mentioned asymptotic 
limit. By specializing the random medium appropriately 
we recover Chandrasekhar's transport equations1 for 
the Stokes parameters. 

In Sec. 2 we discuss the role of degeneracy in the 
perturbation analysis of linear stochastic equations, 
since Maxwell's equations are degenerate, and review 
the basic elements of the perturbation analysis (cf. 
Ref. 2 and the references cited therein). We give two 
examples, other than Maxwell's equations, that illu
strate the role of degeneracy in determining the form 
of the ensuing transport equation. 

In Sec. 3 we begin with the analysis of Maxwell's 
equations by transforming them to a form appropriate 
for the perturbation analysis. In Sec. 4 we apply formal
ly the perturbation procedure of Sec. 2 and arrive at 
transport equations for the coherence matrix of the 
wave amplitudes which is simply related to the Stokes 
parameters. In Sec. 5 we specialize the transport 
equations appropriately and recover Chandrasekhar's 
equation. It is interesting to note that for more general 
random media additional terms appear in the transport 
equations which are not present in Chandrasekhar's 
equations. 

The derivation of transport equations from stochastic 
wave equations has received considerable attention (cf. 
Refs. 3-12 and the references cited therein). In partic
ular, Bourrets, 9 considers problems associated with 
polarization as we do here in Secs. 3-5. Aside from the 
formal character of our results, we also do not obtain 
. transport equations in their most general form because 
we deal with statistically homogeneous random media. 
The extension of the present analysis to locally 
statistically homogeneous random media, which lead to 
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general transport equations, requires additional 
considerations. 

2. DEGENERATE AND NONDEGENERATE 
MATRIX PROBLEMS 

We shall analyze a simple class of problems in order 
to illustrate the methods we shall employ and the form 
of the results that arise. We shall pay particular atten
tion to the role played by degeneracy in the perturba
tion analysis. 

Let v(t) be a complex-valued n-dimensional vector 
function of time satisfying the following system of linear 
stochastic equations: 

(2.1) 

The coefficients J.J.P.(t) and 1Ij>Q(t), p, q = 1,2, ... ,n, are 
complex valued stationary processes. We assume that 
their means are given by 

(2.2) 

where vp., p, q = 1, 2, ... ,n, are constants, and their 
covariances are defined as follows: 

E{J.J.pq(t + s)J.J.p'''(s)} = R~·,p,.,(t), 

E{J.J.:.(t + s)J.J.p'q'(s)} =R:~:N(t), 

E{J.J.p.(t + s)J.J.:'.'(s)} = R~:p'q'(t), 
E{J.J.:.(t + s)J.J.;'.'(s)} =R~,t,.,(t), 

(2.2') 

P,q,P',q'=l, 2, ... ,no 

Here E{ . } denotes mathematical expectation and * 
denotes complex conjugate. Note that the correlation 
functions satisfy 

Rt~:p'.'(- t) =R;J.~p.(t), etc. (2.3) 

The correlation functions of IIp.(t) will not be used in 
the asymptotic analysis and so they are not introduced. 

The numbers k p., P = 1, 2, ... ,n, are real. When they 
are distinct along with their sums and differences we 
shall call (2. 1) a nondegenerate problem. Otherwise we 
call it degenerate. The dimensionless parameter E> 0 
is a measure of the size of the fluctuations. We assume 
that the noise intensities (cross power spectra at zero 
frequency) 

J.:R;-:'i>,.,(s)ds, etc., P,q,P'q'=1,2, ... ,n, (2.4) 

Copyright © 1975 American Institute of Physics 2074 



                                                                                                                                    

are finite and the integrals converge absolutely. These 
integrals have the dimension of time and can be thought 
of, alternatively, as giving a measure of the correlation 
time (or length) of the fluctuations. The coefficients 
,,~(t) are assumed to have similar properties but, be
cause they enter as O(e2) terms in (2. 1), they playa 
less important role in the asymptotic analysis. 

Equations (2.1) arise frequently in connection with 
eigenfunction expansions {or random wave propagation 
problems10 where t plays the role of the spatial variable 
in the direction of propagation of the free wave. The 
initial value problem (2.1) corresponds to the forward 
scattering or paraboliC approximation. The Same equa
tions (2.1) arise in quantum mechaniCS when the Hamil
tonian has a random time-dependent perturbation [cf. 
Eq. (2.20) and Eq. (2.37) also]. 

We are interested in the behavior of the statistics 
of the solution v/>(t), P = 1, ... ,n of (2.1) when E is 
small. Stochastic effects become Significant at times of 
order 1/£2, i. e., after several correlation times. We 
shall explain briefly why this is so. 

and set 

v E(r)=v(r/E2). 

(2.5) 

(2.6) 

From (2.1) we obtain the following equation for V"(T). 

dv;(r) '&.. E ) ~! (!.) E() ~ (!.) E( ) 
d = 2 v,(r + LJ IJ.,q 2 Vq r + LJ ",q 2 Vq r , r E Q.1 £ E q.1 £ 

V;(O)=Ut>.o, p=1,2, ... ,n. (2.7) 

Assume temporarily that the processes IJ.PQ(r) are real 
and let 

IJ.;q(r) = ~ IJ.t>q(~). (2.8) 

We have 

R;M'q'(r) = E{IJ.;q(r + a)IJ.;'Q,(a)} 

= £~ E{IJ.t>q(reta) IJ.t>.q{~) } 

= ~ RPQ.t>'II'~). (2.9) 

Thus, 

limR;""'q,(T) = li(r) r:R,q"'q,(S)ds, 
"0 

(2.10) 

which means, roughly, that IJ.;q(T) tends to white noise 
with noise intensity the coefficient of the delta function 
in (2. 10). The scaling (2. 5) is the only one that will do 
this or, in other words, we have sought the white noise 
limit for (2. 1) because in this limit stochastic effects 
become most prominent. 

We now return to the systematic analysis of (2.7). 
When kp = 0, P '" 1,2, ... ,n, we have a fully degenerate 
problem and the limit as £ + 0 in (2. 7) is referred to as 
the white noise or the diffusion limit. In general, the 
term ikpv;/e2 in (2.7) must be removed before taking the 
limit E + O. Therefore we pass to the interaction repre
sentation and define 
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u;(r) = exp(- ik, r/E2)v;(r), P '" 1, ... ,n, 
which satisfies the equation 

(2. 11) 

du;(r) '" t exp(- ik,r/e2)! IJ.p/;) exp(ikq r/€2)u:(r) 
dr q-1 € \e 

+ t exp(- ikp r/e2) 11,/;) exp(ikq r/e2)u:(T) , 
~1 ~ 

u;(O) =u"o, P = 1,2, ... , n. (2.12) 

We may call the limit E" 0 in (2. 12) the diffusion or 
white noise limit with averaging, since the rapidly 
oscillating terms will now be averaged out. Under cer
tain hypotheses we have the following result (cf. Ref. 2). 
The complex valued process u;(r) converges (weakly) to 
a diffusion Markov process on <l:n , the complex n
dimensional space. 

To describe the limiting Markov process we proceed 
as follows. 

We define transport coefficients 

a;~,p'q'= 6.(k, - kQ +kp'- kq') fo" exp[ - i(kp - kq)a ]R;~"'II,(a) da, 

a:~:p'q'= 6.(- kp + kq + k" - kq') fo" exp[ + i(kp - kq)a] 

xR;;:p'q,(a)da, 

a;~:p'q'= 6.(- k, +kq + kp'- kq.) fo" exp[- i(kp - kq)a] (2.13) 
x R;~:p'q,(a) da, 

a:~h'= 6.(kp - kq +k,.- kq') fo" exp[ +i(kp - kq)a ]R;;'~'q.(a)da, 
b;q = 6.(kp - kq)vpq , 

bto -= 6.(kp - kq)vpq, pq ,p'q' = 1, 2, ... ,n. 
Here 6.(k) is defined to be zero unless k = 0 when it is 
equal to 1. 

Let v = vr + iv l
, v* = vr - iv l

, and 1 (v r, Vi) be a smooth 
function of vr and VI. Let 

-(v+v* v-v*) 
f(v,v*)=f -2-'~ 

and define as usual 

af(v, v*) = ~ (-!b + -!!r), 
*f( *) -1. (Jl 1l) a v, v - 2i ovr - ovI . 

Let u = (ut. U2, ••• ,un) be an n-dimensional complex vec
tor and let feu, u*) be a smooth function in the sense de
scribed above. We denote by op and 0: partial deriva
tives with respect to u, and u: as above and, using the 
summation convention, we define the operator L by 

Lf(u, u*) -= a;~.p'qtlq opuq' op.f(u, u*) + a~.*p'qtlq apu:. o;'f(u, u*) 

+ a:;;,.qAl: otuq.ap.f(u, u*) +a:;.~, .. tl: a;u:, o;'f(u, u*) 

(2.14) 

This operator is the infinitesimal generator of the limit
ing Markov process to which u"(r) converges that is, 
L AD, the formal adjoint of L in (2.14), is the Fokker
Planck operator for uO(r) [the limit of u"(r)]. The transi
tion probability density of UO(T), per, u, u*) satisfies the 
equation 
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(2.15) 

We note that L, and hence L AD, takes real valued func
tions into real valued functions and that it is a possibly 
degenerate second order elliptic operator. 

From this general convergence result of U'(T) - UO(T) 
one may deduce several interesting consequences. 

First, because the stochastic equation (2. 12) is linear, 
we obtain closed equations for moments of each order 
for UO(T), i. e., as E - 0. In particular, we obtain closed 
equations for second and fourth order moments. 

Second, and this is important for the applications to 
Maxwell's equations, the equations for the moments 
can be obtained independently of the diffusion limit 
which leads to the Fokker-Planck equation (2.15) and 
they make sense for partial differential equations (cf. 
Sec. 4). 

Third, the role of the coefficients A in (2.13), i. e. , 
of degeneracy or nondegeneracy, is significant. Let us 
examine it further. 

Suppose that (2.7) is nondegenerate, i. e., the num
bers kp along with their sums and differences are dis
tinct and let us consider the equation for the second 
order moments of UO(T) = (U~(T), ... , U~(T». Let13 

W (T) = limE{u;(T)U;*( Tn = E{u2( T)U~*(T)}, 
p "0 y 

p=I,2, •.. ,n. (2. 16) 

From (2.14) and (2.15) we obtain a closed system of 
equations for the Wp(T) alone; no cross moments enter. 

dw'(T) n (") ~d ="6Ap.W.(T)+ 6Bp. Wp(T)+CpWp(T), 
T .=1 •• 1 

T> 0, Wp(O) =UpOU:O P = 1, ... , n. 

Here we have introduced the following notation: 

Ap. = 1o"" exp[i(kp - k.)a ]R;;;pq(a) da 

+ 10 ~ exp[ - i(kp - k.)a ]R~:p.(a) da, 

Bp. = 1o"" exp[ - i(kp - k.)a ]R~~,pq(a) da, 

+ 10 ~ exp[i(kp - k.)a ]R;~,~.(a) da, 

(2. 17) 

Cp=vpp+v:r,. (2.18) 

If we specialize further to the case 1J.;.(t) = - J-Lop(t), 
I'pq(t) == 0, we obtain a conservative transport equationlO 

dWp( T) _ ~ [- - ] 
d 

- L..J Ap.W.(T)-A.pWp(T), Wp(O)=upou;o, 
T •• 1 

(2. 19) 

By conservative we mean that 2:~=1 Wp(T) is independent 
of T. 

The result (2.17), a closed equation for the expecta
tion of the square moduli of U;(T) in the diffusion limit, 
is clearly a direct consequence of nondegeneracy. In 
the completely degenerate case, when all the kp are 
equal, cross terms enter and (2. 17) [or (2. 19)] are not 
valid. 

Degenerate problems arise, usually, when the un
perturbed problem (2.1) [or (2.7)] has some internal 
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symmetries. It is natural to assume that the stochastic 
perturbations posses, in a statistical sense, the same 
symmetries. Is it then true that the quantities (2.16) 
satisfy equations analogous to (2. 17)? The answer is no 
in general, i. e., cross moment terms cannot be elimi
nated, and Maxwell's equation (cf. Secs. 3- 5) provide an 
example where degeneracy of the unperturbed equations 
precludes the validity of equations such as (2.17). How
ever, we have examples where the answer to the above 
question is affirmative. We present two such examples, 
beginning with equations (2.20) and (2.37), respectively. 

Let XEs"-, the unit sphere in R 3, and consider the 
stochastic partial differential equation 

au(t, x) _.[ 2 ( ) ( ) (t )] at -t v U t,x +EJ-L t,x U ,x , t> 0, 

U(O,x) =uo(x), 

for the complex-valued function U (t, x). Here, v2 

denotes the Laplace-Beltrami operator on S2 and 

(2.20) 

J-L (t, x) is a real, stationary, zero mean, random 
process, almost surely bounded. We assume that its 
correlation function is rotationally invariant, 

E{J-L(t+s,x)J-L(s,x')}=R(t,x.x'), (2.21) 

where X· x' is the dot product of the vector x, x' on S2. 
Thus, J-L(t, x) is a homogeneous random field on the 
sphere. 

Let Y;(x) denote the normalized spherical harmonics, 
p=0,1,2,"', -p~l~P, satisfying 

Is2 Y;(x) Y!:* (x) dS(x) = 15pp ,15 II , , (2.22) 

V 2y!(x) =- p(p + 1)Y!(x), - p~ 1 ~p. (2.23) 

We expand the solution u(t,x) of (2.20) in spherical 
harmonics 

p 

u(t,x) ="6 6 v;(t)Y;(x). (2.24) 
p=O I,op 

This and (2.20) along with the orthogonality property 
lead to the equation 

dV'(t) ro • Tt = - iP(P + 1)v;(t) + iE~ m~. J-L;;(t)v;(t), t> 0, 

v!(O)=u~.P' P=O,1,2,"', -p~l~p, (2.25) 

where 

(2.26) 

This is a problem in the form (2. 1) and it is degenerate 
since k; = - p(P + 1) for - p ~ 1 ~ p. Let 

T=E2t, U!(T;E)=v!(Tje2)exp[ip(p+1)Tje2J. (2.27) 

We obtain for U;(T; e) a system of the form (2.12): 

dU'(T' E) 1 ~ q 
p , = -"0 6 exp[iP(P + 1) Tje21i J-L;; (TN) 
dT E .<0 m=-. 

xexp[ - iq(q + 1)T/E2]u;(T; e), 

T>O, U!(O;E)=U~,p, p=0,1,2,"', -p~l~p. 

(2.28) 

The system (2. 28) is infinite dimensional while the 
results quoted above have been shown only for finite 
dimensional systems. Since we are interested here 
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primarily in the algebraic calculations that lead to 
transport equations of the form (2.19), we shall not 
pause to provide the necessary justification. 

Let us expand the covariance of }J., defined by (2.21), 
is spherical harmonics: 

;,. 2r + 1 
R(t, X· x') = LJ Rr(t)-2- Pr(x· x') 

>,,=0 rr 

~ r 

= 6 6 Rr(t)y:(x)Y:*(x'). ,.,,0"" .... 
(2.29) 

Here we have employed the addition theorem for spheri
cal harmonics. We next formally compute the diffusion 
operator (2.14) for the present problem. We find that 

L = '" (a·.·'m,"m'u m "'um',,"+a*.*,m,"m'u*m "*'u*m',,*I' /JfI~lq' '""I,p'q' q Up q' Up' jJ<l,p'q' q Up q' Up' 

hn,l'm' 

+a*,·,m,"m'u*m "*'Um' ,,"+a·.*,m,"m'um "'u*m'''*'') (2 30) P<l,p'q' q Vq q' Up' P<l,P'q' q Up q' Up' , • 

where the coefficients a are given by the following 
formulas 

a···;;:;,:r:a' = - .l(P(P + 1) - q(q + 1) + P'(p' + 1) - q' (q' + 1)) 
.. 

x 6 ;;o~ exp[i(p(P + 1) - q(q + 1»0' ]Rr(O')dO' 
roo 

r 

X 6 (j y:y;*~)(J y:*y!:*Y;:'), 
S=-T 

a*··;;:;,;' =.l( - P(p + 1) +q(q + 1) + p'(p + 1) - q'(q' + 1)) 
~ 

X 6 Jo ~ exp[ - i(p(p + 1) - q(q + 1»O'Rr(O') dO' 
roO 

r 

x;, (J ysyl~*)(J yS*yl'*"m') L.J rpq r p,'zq" 
.s=-r 

a'· *;:";,:r:a' = .l(- p(p + 1) + q(q + 1) + p'(p'+ 1) - q'(q' + 1)) 
~ 

X 6 Jo ~ exp[i(p(p + 1) - q(q + 1)0' ]Rr(O') dO' 
roO 

a*' *!':,';,:r:a' = - .l(P(P + 1) - q(q + 1) + p'(p' + 1) - q'(q' + 1)) 
~ 

x 6 Jo ~ exp[ - i(p(p + 1) - q(q + 1»0' ]Rr(O') dO' 
roO 

T 

x'" (J ysyl~*)(J ys*yl'.nn'*) L..J rpq T p,.Lq'. 
SO-T 

(2.31) 

Here we have used again the function .l introduced in 
(2. 13), which has value 1 or zero according as the 
argument vanishes or not, and integrals of the form 

Js2 y:(x)Y!(x)~*(x)dS(x), (2.32) 

which can be expressed in terms of Clebsh-Gordan co
efficients. It is sufficient for our purposes here to note 
that the integral (2.32) is zero unless 

s + l - m = 0 and I p - q I ~ r ~ p + q, 

which are the selection rules. 

(2.33) 

As with (2. 16) and (2. 17) we can use (2.30) to obtain 
closed equations for 

w,:(T) = limo E{U~(T; €)Ui"(T; E)}, 
" 

(2.34) 
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Because of the form of the coefficients (2.31) and the 
selection rules (2.33), a direct consequence of the 
rotational invariance of the covariance of }J.(t,x), we 
find that the w,: satisfy the following transport equations: 

dW,."(T) = ~ t [Nmwm(T) _ A-W"(T)] 
dT ~ m=-. y.. qy r , 

T> 0, W:(O) =uo,.ut:, 

where 

x 2 Jo ~ cos(y(y + 1) - q(q + 1»O'Rr(0') dO', 

and 

(2. 35) 

(2.36) 

We have shown therefore, at least for the truncated 
system (2.28), that despite the degeneracy of the un
perturbed problem (rotational invariance of v2), statis
tical homogeneity of the random perturbations restores 
the validity of the transport equations (2.35) in the diffu
sion limit. 

Another example, quite similar to the one just de
scribed, is the following. Let g denote an element of 
SU(2), the group of 2X2 unitary unimodular matrices, 
and let D2 denote the Laplace-Beltrami (Casimir) 
operator on SU(2). Consider the stochastic differential 
equation 

(Ju(t,g) _.[ 2 ( ) ( ( ] Of -z D u t,g +€}J. t,g)u t,g) , t> 0, 

u(O,g) =uo(g), (2.37) 

which is analogous to (2.20). 

We proceed now in the same way as above. Let ttm(g) 
denote the matrix elements of the (2p + I)-dimensional 
representation of SU(2), p = 0, t 1, t, .. " - p ~ l, m ~ p, 
l, m integers or half-odd integers together with p. We 
note here the following properties14. 15: 

unitarity tfm(g-1) = tf:(g), (2.38) 

orthogonality J
SU

(2) tf,~,(g)tf:(g) dg 

= (2P + 1)"1/ipp,/iIl,/imm" (2.39) 

eigenfunction of D2 D2tfm(g) = - P(P + l)tfm(g), (2.40) 

addition theorem tfm(g1g2) 
p 

= 6 tf" (g1)tt", (g2)' (2.41) 
"=-p 

We expand the solution of (2.37) in terms of the 
representation tfm(g) 

so, on using (2.38), we obtain 

du'm(t) 
~ =-ip(P +l)u'm (t) +i€6 6 }J.'m,~"(t)U~"(t) 

dt p. ~"p. .' 

(2.42) 

u;"(O) =u~~.. (2.43) 

Here and in (2.42) the sum is over q = 0, t 1, t ... and 
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- q .,; X, 11 .,; q with integer increments. The coefficients 
/J.;:"A"(t) are defined by 

/J.!:">""(t) = v(2p + 1)(2q + 1) fsu(2) t:"'*(g)t;" (g)/J. (t,g) dg. 

(2.44) 
Passing to the interaction representation, as in (2.28), 
we let 

T= E2t, U;m(T; E) =V;m(Tje2) exp[iP(p + 1)T/E2] (2.45) 

and obtain 

du1m(T' E) 1 
I> , =-L;L;exp[iP(P+1)Tje2]i/J.Im,A"(Tje2) 
dT E 0 A" po 

xexp[ - iq(q + 1)TN]u~"(T;E), 

T> 0, U;m(O;E) =u~~. (2.46) 

Before evaluating the diffusion limit we must specify 
the properties of the random function /J.(t,g). It has 
mean zero, as above, and covariance 

E{/J.(t + S ,gl)/J.(s ,g2)} = R(t,gbg2)' 

We assume that R has the following invariance 
properties: 

R(t,gbgZ) = R(t, e ,gi1g2) = R(t, e ,g2gii ), 

(2.47) 

(2.48) 

where e denotes the identity element of SU(2). Thus 
R(t, e,g) is a function which is constant on conjugacy 
classes 

R(t,e,g2) =R(t,e,glg2gi1). (2.49) 

It has therefore the expansion15 

~ 

R(t,gl,gZ) = R(t,e ,gi1g2) =Wo Rr (t)too (gi1g2) 
~ r 

= L; L; Rr (t)tO"(gi1)t:O(g2) 
T=O V=-T 

ro r 

= L; L; Rr (t)t:O*(gl)t:O(gz). (2.50) 
r=0 II=-r 

Here we have used (2.38) and (2.41). 

The limiting diffusion operator, analogous to (2.30), 
can be obtained just as before but the new coefficients 
a have 12 instead of 8 indices. We shall not write them 
explicitly. We proceed directly to the transport equa
tions corresponding to (2.35) by employing the selection 
rules for the Clebsh-Gordan coefficients. 15 

Let 

W;A(T) = limE{u~A(T;E)u~A*(T; E)}, T~ 0, 
"0 

y=0,t1,t,··., -y";v,X";y. (2.51) 

Then, W:A(T) satisfy the following transport equations: 

dW,,"A(T) L; ~ [N)..mlW'?/(T) _ Aml,"AW"X(T)] 
dT q;;: yq q QY Y , 

T> 0, W;X(O) =uo;,.uo;:, 

where 

x 2 fo ro cos(y(y + 1) - q(q + 1»oRr(o) do, 

A~~ml ~ 0, A~~"'I =A;;"\ 

(2.52) 

(2.53) 

y,q=0,i,1,~, ... , -y,,;v,X";y, -q";m,l.,;q. 
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In (2.53) the summation is over integers or half-odd 
integers depending on whether I y - q I is an integer or 
half an odd integer. 

3. PRELIMINARY TRANSFORMATIONS OF 
MAXWELL'S EQUATIONS IN A STATISTICALLY 
HOMOGENEOUS MEDIUM 

In this section we shall treat Maxwell's equations in 
a nonconducting medium whose dielectric constant16 

E and magnetic permeability J.L are random positive 
definite symmetric tensors. The mean values (ensemble 
averages) of E and /J. will be constant multiples of the 
unit tensor I so that 

E{E(X, t)}='EI, 

E{/J. (x, t) = iiI, 
€, Ii are constants. The deviations of E and /J. from 

(3.1) 

their means are small stationary tensor-valued random 
processes in space and time which are of order y, 18 

where y is a small parameter. The exact nature of these 
random processes will be specified later. 

Maxwell's equations in a nonconducting medium are 

1 -a D=V!\H c t , 

1 - a tB = - v !\ E 
c ' 

(3.2) 

D=EE, 

B=/J.H. 
(3.3) 

From (3.2) we may deduce that the further equations 

V.D=O, 

V·B=O, 
(3.4) 

hold for all times if they hold initially. Here E, Hare 
the electric displacement and magnetic induction, and 
c is the speed of light in vacuo. 

When E, /J. are independent of t (3.2), (3.3) imply 

(3.5) 
1 
-1l

1/2 a (u1/2H)=_V!\E c,.. t ,.. , 

where El/2, /J.1/2 are the positive square roots of E, /J.. 

On making the substitution 

E=E1 / zE, H=E1 / 2H, 

Eqs. (3.5) become 

atE = eel /2.<::7!\ (jJ. -1 /2H), 

atR = - c /J.-1I2 V !\ (E-1I2E). 

(3.6) 

(3.7) 

In what follows we shall take (3.7) to be true even when 
E, /J. do depend upon t since we are primarily interested 
in the case where the time derivatives of E, j.J. are 
small, and (3.7) has the convenient property of energy 
conservation. Thus we may define the energy density 
t by 

(=E·D+H· B, (3.8) 
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which may also be written 

e=E2+R2. (3.9) 

Energy conservation follows from (3.5) since ate is a 
divergence 

ate =2cV· (HAE). (3.10) 

Let us define the matrices Aj by 

(AJ)lk =EIJk' (3.11) 

where EIJk is the alternating symbol, and the matrix 
A(k), k=(k b k2,k3), by 

A(k)=AJkJ, (3.12) 

with summation implied. Then, if xl, X2, X3 are Cartesian 
coordinates, oJ = a/ax}> a = (ai' 02, (3), we may write 
(3.7) in the form 

atE = CE-1I2A(CI)(/J. -1 /2R), 

atll: - C /J. -1I2A(CI)(E-1 /2E), 

which, on differentiating the products, becomes 

a E-cE-1I2AJ IJ -1/2a H+cc1/ 2AJ(a IJ-1I2)R 
t - "" J J"'" 

OtH = - c/J.-1I2AJC1l20jE- CjJ.-l/2AJ(oJC1 /2)E. 

(3.13) 

(3.14) 

Let us now be more explicit about the dependence of 
the random processes E, /J. upon x, f and the small 
parameter y. With no loss in generality and to avoid 
very lengthy calculations we shall assume that 

C 1 / 2(X, f) =E(O)I +yE(1)(X, t), 

/J.-l/2(X, f) =-1, (3. 15) 

where E(O) is a constant scalar, E<1l is a random sym
metric tensor valued process with zero mean and 
stationary in x, t. Thus, for instance, the correlations 

(3.16) 

depend upon x, t, x' ,t' only through x - x', f - t'. On sub
stituting (3.15) in (3.14), we obtain 

.!. OtE=E(O)AJ oil +yE(l)AJ aJR 
C 

(3.17) 

We shall next Fourier transform (3.17) with respect 
to x. Denote by E, Ii, E (!), the Fourier transforms of 
E, Rand E(l) with k the transform variable. Then 

1 A (A J A 

-;; GtE(k, t) = - ik JE O)AJH(k, f) - iy J(k, s, t)H(s, f) ds, 

1 A J A A 

C a tH(k, f) = ik 0 E(O)E(k, f) + iy J K(k, s, flEes, f) ds, 

where 

J(k, s, t) = €,(1)(k - S, t)AJs 1> 

K(k, s, t)=A Jki(1)(k- s, f). 

The integrals in (3.18) are over all of R3. 

(3. 18) 

(3. 19) 

In order to use the perturbation formalism of the 
next section, which is formally identical to the one 
employed in Sec. 2, we must eliminate the terms 0(1) 
as y- 0, on the right side of (3.18). In preparation we 
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first diagonalize the 0(1) term which may be written 

. (0)( 0 -A(k»)(~) 
l€ A(k) 0 H· (3.20) 

The 6 x6 block matrix in (3.20) is Hermitian [since A(k) 
is skew] with eigenvalues Ikl, Ikl, - Ikl, - Ikl, 0, O. 
The matrix of normalized eigenvectors may be taken to 
be 

- 1 (i(k) - j(k) irk) j(k) 12k 0) 
T(k) = 12 j(k) irk) _ j(k) irk) 0 12k (3. 21) 

where it is the unit vector in the direction k and irk), 
Hk), it form a right-handed, orthonormal triple of 
column vectors in R3. The dependence of i and j on 
k will sometimes not be shown explicitly in the sequel. 

On writing 

A = diag(l, 1, - 1, - 1,0,0) 

and setting 

(
E(k, f») -lICk, f) = T(k)u(k, f), 

(3.18) becomes 

.!. atu(k, t) =i€(O) !k!Au(k, t) 
C 

+ y J TT(k) K(k, s, t)r(s)u(s, f) ds 

where 

( 
0 - iJ(k

O
' s, t») 

K(k, s, f) = iK(k, s, t) 

The 0(1) term in (3.24) may be eliminated by the 
transformation 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

u = exp(iv Ik jAt)w (3.26) 

where we have defined 

(3. 27) 

as the speed of wave propagation when y = O. Denoting 
by E(1) again the quantity c€<1l, we have 

atro(k, t) = J exp(- iv Ik j At)T(k)K(k, s, t)T(s) 

xexp(iv I s I At)w(s, t) ds. (3.28) 

Equation (3.28) is a 6 x6 system. We shall reduce it 
first to a 4 x4 system and then further to a 2 X2 sys
tem. Here we have used the tilde on w so that at a later 
stage we may use plain w for a different but related 
quantity. 

Consider the diverge'!.ce eq~ations (3.4). These imply 
that the components of E and H along k do not contribute 
to the zero-order nor to the first-order terms; they 
contribute only O(i) terms. This contribution has co
efficients with mean zero and, according to the pertur
bation analysis of the next section, it makes no contri
bution in the asymptotic limit we are seeking. 

Thus, in (3.28) the last two components of 

u(k t) = TT(k) (~(k, t») 
, H(k, t) 

may be dropped and we may treat (3.20) as a 4 x4 
system 
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0tw(k, t) = y j exp(- iv I k IAt)TT(k)K(k, s, t)T(s) 

xexp(iv I a IAt)w(a, t) de, 

where 

w=(~ o 0 0 0 ~ 1 0 0 0 0 -
o 1 0 0 0 w, 

0 o 1 0 0 

T(k) = ~ C(k) - j(k) 
,f2 j (k) l(k) 

i(k) j (k») 
- j(k) i(k) , 

and 

A =diag(l, 1, -1, -1). 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Our next step is to make use of the fact that it is not 
necessary to distinguish between 

( WI (k») d (W3(-k») 
wz(k) an W4(- k) 

which both Arepre~ent waves travelling in the + k direc
tion when E and H are multiplied by exp(- ik· x) for the 
synthesis of the inverse Fourier transform. In fact, 
Eqs. (3.18) have the property that if 

( ~*(k») = (~(- k») 
H*(k) H(- k) 

(3.33) 

is true at t = 0, it remains true for all time. But (3.33) 
is true initially since we assume E, H are real fields. 
This symmetry is reflected in (3.29) by the fact that 

(3.34) 

so that we may eliminate Ws and W4 in favor of WI and 
wz. 

Let w(k, t) denote the first two components of w(k, f) 
and let us omit the bar so that 

(k t) = (WI (k, f») 
w, w2(k,f) . 

Let T(k) and r(k) be given by 

T(k) = (i - j), T"(k) = (j i) 

(3.35) 

(3. 36) 

where as before i, 1, k form a right-handed orthonormal 
triple. Implicit in the notation T(k) is that i and j are 
functions of k which we now make definite. Let (e, <P) be 
spherical polar angles relative to some fixed reference 
frame. Thus, if 

(

sine cos<P) 
k = sine sin<p , 

case 

then 

(

CaSe cos<p 

i(k) = case ~in<p ), 

-sme 

It is clear that 

i(- k) = i(k), j(- k) = - j(k), 
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(3.37) 

(3.38) 

so that (3.31) and (3.36) imply 

- 1 (T(k) T(- k») 
T(k) =,f2 T~(k) TL(_ k) . (3.39) 

The matrix TT(k)K(k, s, t)T(s) in (3.29) may be written 
in partitioned form. Then, using (3.34) the first two 
rows of (3.39) take the form 

(ltw(k, t) = j exp[- iv(lkl- I a I)t][- iT(k)J(k, s, t)TL(a) 

+ iT1(k)K(k, a, t)T(a) ]w(s, t) ds 

+ j exp[ - iv( I k I + I s I )t] 

x [- iT(k)J(k, s, t)TL(_ a) ]w* (- s, t) ds (3.40) 

where 

TI = (TJ.)T. (3.41) 

From (3.19) it follows that 

TT(k)J(k, s, f)TL(S) = TT(k)€,m(k_ s, t)AJs,TL(s). 

But 

TT(k)AikJ= IkIT1(k), AJsJTL(S) = IsIT(a). 

Thus 

TT(k)J(k, S, t)TL(S) = I s I TT(k)e(j)(k- s, t)T(s), (3.42) 

and Similarly 

TI(k)K(k, s, t)T(a) = - I k I TT(k)E'(j)(k - s, t)T(a), 

TT(k)J(k, s, t)TL(_ s) = la I TT(k)E'(j)(k- s, t)T(- s), 

T1(k)K(k, s, f)T(- s) =- Ikl TT(k)E'(j)(k- a, t)T(- a). 

(3.43) 

On using (3.42) and (3.43) in (3.40) and replacing a by 
- s in the second integral, we obtain the equation for 
w(k, t) in the desired form: 

Otw(k,t)=-iyj (Ikl + Isl)exp[-iv(lkl-lal)t] 

x TT(k)e (I )(k - a, t)T(a)w(a, t) ds 

-iyj (lkl-lsl)exp[-iv(lkl + Isl)f1 

x TT(k)E'(1)(k + s, t)T(s)w*(a, t) da. (3.44) 

Recall that w(k, t) is given by (3.35). Summarizing 
the above transformations, Wj (k, t) and Wz (k, t) are 
related to E(k, f), II(k, t) as follows: 

E(k, t) = exp(iv I k I f) (i(k)wI (k, f) - j (k)W2(k, t» 
.f2 

+ exp(-); I k I f) (i(- k)wt(- k, t) _ j(_ k)w!(- k, t» 

II(k, t) = eXPji kit) {J(k)WI (k, t) + i(k)wz(k, t» 

Let 

+ eXP(-:; I kit) {J (_ k)wt(- k, t) + i(- k)w!(- k, t». 

(3.45) 

<p (k, x, t) = v I kit - k· x, (3.46) 

C'(k, x, t) = exp[i~, x, t)] (i(k)wj (k, t) - Hk)W2(k, t)). (3.47) 
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Then we may rewrite (3.45) in the form 

E(k, t) exp(- ik· x) = [(k, X, t) +E*(- k, x, t), (3.48) 

H(k, t) exp(- ik· x) =kA[(k, x, t) - kA[*(- k,x, t). 
(3.49) 

From (3.49) it follows that the magnetic vector :A need 
not be considered independently, so we shall restrict 
attention to the electric vector. The representation 
(3.48) of the electric field E(k, t) exp( - ik' x) corresponds 
to a forward propagating wave l(k, x, t) and backward 
propagating one along k. ~ Since in the inverse Fourier 
transform we integrate E(k, t) exp( - ik . x) over k, the 
total wave with wavevector k is a sum of the forward 
wave for k and the backward wave for - k: 

2 ReE(k, x, t) ==[(k, x, t) +[*(k, x, t). (3. 50) 

We shall end this section by displaying the relation 
between the electric wave with vector k given by (3.50) 
and the Stokes parameters (Ref. 1, pp. 28-34). Let 

wl(k,t)= IW1(k.f)1 exp[ie1(k,t)], 

(3.51) 

With this definition, (3.47) and (3. 50) yield 

2 Re[ = i(121 wll cos(c!> + 81» + j(121 w21 cos(c!> + 82 + 7T». 

(3.52) 
Define I, Q, U, Vas follows: 

I==2(lwlI2+ IW212), Q=2(lwlI2_lw212), 

u=4lwlllw21 cos(81 - 82 -7T), 

v=4lwlllw21 sin(81-8-7T). 

With this definition we have the identity 

wwt=(Wlwt W1W~)=.!(I+Q U+iV) 
W2W{ W2W~ 4 U - iV 1- Q . 

(3.53) 

(3. 54) 

In (3.53) and (3.54) I, Q, U and V are random functions 
of k and t. Equation (3.54) is the desired relationship 
between the Stokes parameters and the coherence 
matrix wwt . Relations (3.53) correspond to Chandrasek
har's equations 159 and 160 (Ref. 1, p. 29). Reference 
should be made to this work for further discussion of 
their significance. 

4. EVOLUTION EQUATION FOR THE COHERENCE 
MATRIX 

In this section we shall apply the perturbation 
fotmalism of Sec. 2, to be described shortly for the 
present problem, to obtain an evolution equation for the 
expectation of the coherence matrix 

W(k, t) = w(k, t)wt (k, t), (4.1) 

as E- 0, where w(k, t) satisfies (3.44). Before describ
ing the relevant asymptotic limit we shall derive 
stochastic equations for the coherence matrix. 

We write (3.44) in the form 

a tW = - iy(K1W + K2W*), (4.2) 

where K;, i = 1,2, is the operator which takes one vec
tor function w(k, f) with another K/w given by 

(K;w){k, t) = J K; (k, s, t)w(s, f) ds, i = 1,2, (4.3) 
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with 

K1(k,s,t)=(lkl + Isl)exp[-iv(lkl-lsl)t1 

X TT(k)€ (k - s, t)T(s) , 

K 2(k,s,t)=(lkl-lsl)exp[-iv(lkl + Isl)t1 

X TT(k)E"(k +8, t)T(s). (4.4) 

Here and in the sequel we shall omit the superscript on 
E since it is not necessary. We note that in (4.2) both 
wand w* occur so it is convenient to adjoin to (4.2) its 
complex conjugate to get 

a{:*) = r( :%~ -!%r)(:*)' (4. 5) 

Now consider the (outer) product 

( W(k, t) )(wt(k' f)wT(k' t» =( ww
f 

w*(k, t) , , w*w T 
WWT) 

w*w T 

(4.6) 

say, where 

wt (k, k', f) == W(k', k, f), V*(k, k', f) '" V(k', k, f). (4.7) 

Then, on using (4. 5), we see that 

at(~ :.) ==y(-!%~ -:%r)(;: :.) 
( w V)(il<1 - il<i) (4.8) 

+y V* W* iKJ. - iK[ . 

Here, an operator K acting on the left operates 
on W, V, etc., as functions of k but a K acting on the 
right operators on the k' dependence. Let 

(k k' ) _ ( W(k, k' , t) V(k, k' ,t) ) 
W , ,t - V*(k,k',t) W*(k,k',t) , 

R = (- iK 1 - iK 2 ) 
iK~ iKt· 

Then (4.8) may be written 

OtW == y(K(f)W + WK f (t» E yK(t)W, 

say. 

(4.9) 

(4.10) 

We recall that in (4.10) y is a small parameter and 
K(t) is a random linear operator such that 

E{K(t)} = 0, (4. 11) 

which follows from the assumption that E(1) in (3.15) has 
mean zero. We are therefore in a situation formally 
similar to (2.1) with lip. E 0 and the 0(1) terms removed 
by an exponential transformation. Now of course we 
are dealing with integral operators rather than matrices. 
The formalism of Sec. 2 can be applied to (4.10) as 
described in Ref. 17, for example. This perturbation 
analysis is the Markovian limit of the smoothing ap
proximation. 18, 19 A theorem characterizing the asymp
totic behavior of solutions to operator equations such 
as (4.10) is given in Ref. 20 but we shall proceed 
formally here. 

Let 'r '-= y 2t and set 
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where the arguments k, k' are suppressed. Then, ac
cording to the procedures described in Refs. 17-20, 
as 1'-0, 

E{WY(T)}-W(T) 

and 

(4.13) 

where 

f
T t 

KK = lim -T
1 f E{K(t) K(t')}dt' dt. 

T'''' 0 0 
(4.14) 

In (4. 14) the integrand is the operator composed of 
K(t') acting first and followed by K(t). Departing some
what from the framework of Sec. 2, we shall assume 
that initially E(x, 0) and :fJ(x,O) are stationary random 
fields with mean zero and statistically independent of 
the !.andom inhomogeneities. This leads to initial data 
for W which contain delta functions. However, since the 
inhomogeneities are also stationary, the kernel of the 
operator I<K will also contain delta functions in a con
sistent manner so that (4.13) makes sense as we show 
below. 

Th~ explicit calculation of the operator KI< for (4.10) 
with K given by (4.9) and K .. i = 1,2, by (4.3), (4.4) is 
very lengthy but straightforward. We give a sample cal
culation in the Appendix. We shall now state the result. 

First we note the consequences of stationarity as
sumed about the random symmetric tensor E(X, t) in 
(3.15) (with the superscript omitted). Let 

E{ EUV(X' , t')E,1v' (x' - y, t' - t)} = R ..... IIv'(y, t), 

U,v,u l ,v' =1,2,3. (4. 15) 

Then, we have the following: 

E{e uv(k, t'le u'v'(a, t' - t)} 

= J J exp(ik· x + ia· x/)E{Euv(X, tl)Eu'v'(X/, t' - t)}dxdx' 

= J J exp[i(k+a)· x]R ..... u'v.(y, t) exp(- ia· y)dydx 

= (21T)36(k+a) J Ruv,u'v'(y, t) exp(- ia· y)dy 
3 A 

= (21T) 6(k + a)Ruv, u'v'(- a, t) 
3 A 

= (21T) 6(k + a)Ruv, u'v.(k, t). 

Let S· and S· be defined as follows: 
3 r'" A S;:."...".(k,w) = (21T) Jo Ruv,u'v.(k, t) exp(- ivwt)dt 

(4.16) 

= (21T)3 J Jo'" Ruv,u'v'(Y' t) exp[i{k. y- vwt)]dydt, 

S;... u'v'(k, w) = (21T)3 f.~ Ruv, uv(k, t) exp(- ivwt) dt 

'" (21T)3 J J.:R ..... u'v'{y, t) exp[i(k· y- vwt)]dydt, 

u,v,u l ,v' =1,2,3. (4.17) 

Let also 

S ..... II'V' = S:.., u'v' + S;... u'v', (4.18) 

which is the space-time power spectral tensor. 

As a result of the time averaging in the definition 
(4.14) of KK, W, the top left 2 X2 block in W, decouples 
from the rest of W. In addition, if we assume that 
W{O,k,k/) = Wo(k)6(k- k/), which corres~nds to sta
tionary initial fields, then this form of W is preserved 
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for T> 0, i. e., WeT, k, k/) = WeT, k)6(k- k'lo We shall 
continue to denote the "diagonal" terms by W{T, k) as in
dicated already. Furthermore, we find that (4. 13) leads 
to the following evolution equation for WeT, k) = W,,.(T, k), 
p,p' = 1,2 (summation implied): 

OTW/>/>.{T, k) = J {Ik 1 + 1 a 1 )2T .. (k)T w{a)T ... />.(k)T v'q.{a) 

XS ........ v'{k-a,lkl-lal)wqq.{T,a)da 

+ J (lkl-lal)2T .. {k)Tw{S)Tu'/>.(k)Tv'q.(a) 

XSuv"Iv'{k+s,lkl + lal)W:q.(T, a)da 

- J Tu/>{k)TVY{O')T ..... (O')Tv'q{k)[(lkl + 10'1)2 

x S:.., uv{k - 0', 1 k 1 - 1 0' \ )+ ( \ k \ - \ 11\ )2 

X S;:." uv(k +0', \ k 1 + \0' I)] dO'· Wq/>,(T, k) 

- J T ... (k)T vy(a)T ..... (O')T v'q.(k) [( \ k 1 + \ a 1)2 

X S~ u'v.(k - a, 1 k 1 - \ (11) + ( 1 k 1 - 10'\)2 

xS~"'v.(k+a, Ikl + \al)]dO'. W,q.(T,k). (4.19) 

This evolution equation is the main result of this sec
tion. In the next section we shall specialize (4. 19) and 
compare it with Chandrasekhar's1 equations. In the 
remainder of this section we shall verify that Eq. (4.19) 
has certain properties which are necessary for a rea
sonable transport equation. These are: 

(a) Under the "reverSibility" hypothesis 

(4.20) 

which follows if 

RUv, uv{y, t) = R ..... u'v'(- y, - t), (4.21) 

i. e., E(X, t) is reversible, Eq. (4.19) conserves "total 
energy": 

(4.22) 

(b) For each k the positive definiteness of W{T, k) is 
preserved. 

Let us show that (4.22) holds. Let us take aT under 
the integral sign. Then it is just the left member of 
(4. 19) contracted over p, P' and integrated on k. The 
right member Similarly contracted and integrated is 

J J (I k I + I a 1)2 Tu,(k)T w{a)T u,.{k)T v·q.(a) 

XS ..... u'v'(k-a,lkl-lal)Wqq{T,a)dadk 

+ J J {I k 1 - \ a \ )2T .. (k)TVq(a)T ... ,(k)T v'q.(a) 

XS ..... uv{k+a, Ikl + lal)W:q.(T,a)dadk 

- J J (Ik I + I a I )2T .. (k) Tv .. (a) T u' .. {(1)T v'q(k) 

xS;:"'u'v·(k-a,lkl-lal)wqp(T,k)dadk 

-J J (lkl-lal)2T .. {k)Tvy (a)Tu' .. {<1)Tv•q(k) 

xS;:"'u'v'(k+a, Ikl + lal)Wq,{T,k)dadk 

- J J (I k I + 1<11 )2T .. (k)T vy(a)T ..... (a)T v'q{k) 

x S~ u'v.{k - 0', 1 k 1 - 1 al )W,q( T, k) da dk 

- J J (Ikl- lal )2 Tu,(k)T vy(<1)T ..... (a) Tv.q(k) 

x S=~ u'.,.(k +<1, I k I + lal )Wpq( T, k) dO'dk 
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We shall show that the third and fifth integrals combine 
to cancel the first and similarly the fourth and sixth 
cancel the second. 

First W:q = Wqp and so we may combine the third and 
fifth terms to get 

- J J (Ikl + 10'1)2T t19(k)T .,..(O')T ,.. .. (O')T v'q(k) 

W* =1/'rt + ttt 
where 1/ and t are eigenvectors normalized so that 11/ 12 
and 1 t 12 are the (positive) eigenvalues of W*. From the 
linearity of S2 in the third slot, it is enough to consider 

(4.31) 

X(S:"'u'v,+S;~.vu)(k-O', Ikl-IO'I)Wpq(T,k)dO'dk. (4.24) Writing this explicitly from (4.19), we get 

On renaming k as s, 0' as k, r as p, pas q', u as v', 
v' as v and u' as u, we get 

-J J (Ikl + Isl)2Tv'q,{s)Tu'p(k)T..,(k)T",,(k) 

x(S~u'''''+S=:''v')(s-k, Isl-lkl)Wqq,(T,S)dkds. (4.25) 

But s+ is symmetric in its first two subscripts since it 
inherits this symmetry from the symmetry of e(x, t). 
Thus, in view of (4. 20) the cancellation with the first 
term in (4.23) follows. 

Let us next show that (4.19) preserves W(T, k) as a 
positive definite hermitian matrix. It is clear using 
(4.20) that (4.19) preserves hermiticity. Let us re
write (4.19) in the more convenient form 

OTW(T, k) = J S1[k, s, W(T, s»)ds + J ~[k, s, W*(T, s»)ds 

- A(k)W(T, k) - W(T, k)N(k), (4.26) 

where the operators S1 and S2 are linear in the third slot 
and A(k) is a matrix. Transferring the last two terms 
to the left in (4.26), we get 

O,z(T, k) '= exp( - A(k)T]j S1(k, S, Wei, s) Ids exp( - At (k)'T] 

+eXP[- A (k) T]j S2[k, s, W*('T, s»)ds 

xexp(-At(k)TJ, (4.27) 

where 

Z(T, k) 0= exp[A(k) 'T] W(T, k) exp[At (k)'T]. (4.28) 

From (4. 28) it follows that iii is nonnegative if and only 
if Z is. Moreover, a.,z is nonnegative if and only if 

J S1[k,s, W(T,s»)ds+ J S2[k,s, W*(T,s)]ds (4.29) 

is nonn~ative. Thus it is enough that (4.29) is nonnega
tive if W is. We proceed to show this next for the sec
ond term in (4.29) since the other one follows in the 
same way. 

Let ~ be an arbitrary vector. We shall show that for 
each k and s 

(4.30) 

provided that W is nonnegative. If W is nonnegative W* 
can be expressed as a sum of two terms each of Which 
is nonnegative 
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(lkl-lsl)2T..,(k)~pTvq(S)1):T,,~,(k)~:Tv'q'(S)1}q 

XS"""'v'(k+s, Ikl + lsi). (4.32) 

Let T(k)~ 0= a and T(s)ll* o=~. Then to show (4.32) is 
positive it is enough to show 

o .. l3 ... o;,I3}S"" .... v'(k+s, Ik) + /81);>-. O. (4.33) 

But S is a power-spectral tensor and therefore by 
Bochner's theorem (4.33) is true. The proof of preser
vation of nonnegativity for Win (4.19) is complete. 

5. THE TIME-HOMOGENEOUS ISOTROPIC CASE 

Let us aSsume that the random inhomogeneous f(X, t) 
in (3.15) do not depend on t and that in (4.15) we have 

R"", ,.v(y, t) = 0uv0u'v.R( I y I). (5. 1) 

From (4. 17) and (4.18) it follows that 

S"", u'v,(k, w) = (27T)3 i: R( I y I) exp[i(k. y - wvt) ] 

dy dt 0uv0rlv' 

= (211,)5 o(w) f" (r R(r) exp(i Ikjrcose) 
v 0 Jo 

x r2 sine de dr 0uv0u'v' 

= 27Iouv0rlv' O~w) 2. (27r)4 Ia" r S~~llk 1 r R(r) dr 

0=27Iowou'v'°(W)S(jkj), (5.2) 
v 

say, and Similarly 

+ ~ o(w) i) - I I S"", rlv,(k, w) 0= owou'v' 7r-- + - S( k ). 
v wv 

In (5.3) l/w denotes the generalized function corre
sponding to the prinCipal value and this will be the 
meaning of the singular integrals in (5.4) below. 

(5.3) 

USing polar coordinates in s so that s = 1 s I ~ and 
ds=dO(s)lsI 2 dlsl we rewrite (4.19) for Sand S· given 
by (5.2) and (5.3). After a few rearrangements we 
obtain 
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Let us define the 2 x 2 matrix 

L = (Lpq(k, s» = (T up(k)T uq(s». (5.5) 

We note that 

L T(k, u) = L(u, k). (5.6) 

Furthermore, recalling that T(k) is given by (3.36) and 
i, j by (3.37), it is easily verified that 

J L(k, a)L(a, k) dn(u) = ~11 I. (5.7) 

For Ikl fixed assume that 8(0')=8 (constant) say, for 
o ~ a ~ 21 k 1 and Sea) = 0 for a large. In this case (5.4) 
simplifies considerably because the imaginary terms 
cancel with the help of (5.7). Thus, for this choice of 
power spectrum S we have 

- 6411
2 1 k 148 (1 1 ~ ~ - ~ 

oTW(T,k) = 3 -4 L(k,s)W(T,lkls) 
v 11 11:1=181 

XLT(k, s) dn(s) - WeT, k»). (5.8) 

The evolution equation (5. 8) is a transport equation for 
the average coherence matrix WeT, k) in the asymptotic 
limit of long times or distances of propagation and weak 
inhomogeneities. We have assumed throughout statisti
cal spatial homogeneity and so the size of the wavenum
ber 1 k 1 did not play any role in the asymptotics. If we 
interpret T in (5.8) as optical distance, rather than 
time, then (5. 8) coincides (up to normalization) with 
Chandrasekhar's equation (2.12) (Ref. 1, p. 40) includ
ing the 1 k 14 dependence of the constant, which appears 
as the A -4 in Chandrasekhar, originating from Ray
leigh's law of scattering. This follows immediately 
from the relation 

(5.4) 

When the assumption of statistical spatial homogeneity 
is replaced by (i) local spatial statistical homogeneity, 
(ii) 1 k 1 large compared to the reCiprocal characteristic 
length of these variations then, we expect that (5. 8) 
should be replaced by a space-time tr~sport equation 
of the local average coherence matrix WeT, k, x). Note 
that for an asymptotic theory of this sort the size of 
the wavenumber of the primary fields plays an impor
tant role, in addition to y, the size of the inhomogenei
ties. As we mentioned in the introduction, such a re
sult requires additional considerations and will not be 
given here. 

We note finally that the imaginary terms in (5.4) may 
be interpreted as representing residual phase retarda
tion effects. This interpretation is motivated by the 
similar appearance these terms have to the real part of 
the effective propagation constant in the dispersion the
ory for the mean fields. 18 

APPENDIX. THE OPERATOR K /< OF (4.14) 

In (4. 14) we defined the operator 

KK = lim ~ [T (t E{K (t)/< (t'Hdt' dt. 
Tf"" )0 )0 

Here 

K(t)W ooK(t)W + WKT(t) , 

where 

( 
W(k, k', t) 

W(k,k',t)oo V*(k,k',t) 

- i1(2) 
il<{ , 

V(k,k', t) ) 
w*(k, k', t) , 

(Al) 

(A2) 

(A3) 

(A4) 

/< j, 1<2 being operators defined on 2 X2 matrix functions 
(5.9) W(k) by 

corresponding to (3. 54) between the average coherence 
matrix and the mean values of the Stokes parameters 
i, Q, fl, iT, and the definition (5.5) of L. 

It is interesting to note that Rayleigh's law of scat
tering that gave rise to Eq. (2. 12) in Ref. 1 corre
sponds here to assumption (5.1) and the further assump
tion on S stated below (5.7). If this latter assumption 
is not satisfied, however, the form of (5.8) changes 
rather drastically since we have to go back to (5.4). 
ThUS, if the power spectrum Sea) of the inhomogeneities 
varies Significantly in the region 0 ~ a ~ 21 kl, Eq. (5.8) 
is no longer valid. 
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(/<lW)(k)=J (Ik\ + isi)exp(-iv(iki-Is\)tj 

x TT(k)€(k- s, t)T(s) W(s) ds, 

(/<2W)(k)ooJ (lkl-lsl)exp[-iv(lkl + Isl)t] 

x Tt(k)€ (k + S, t)T(s) W(s)ds. 

USing (A2) we have 

K(t)K(t')W =K(t)K(t')W + WKT(t')i(t(t) 

(A5) 

+ l«t)WKt(t') +K(t')WKT(t), (A6) 

where W is a dummy operand and is regarded as deter
ministic when taking expectations for (Al). 
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To illustrate the calculation we shall consider only 
the contribution of the first term on the right of (A6). 
From (A4) 

K(t)K(t') 

_(- Kt(t) K t (t') +K2(t)K2(t') 
- Kt(t)K1(t')-Kt<t)K2(t') 

- Kl (t)K2(t') +K2(t)K1 (t'») 
K2(t) K2(t') - Kl (t) Kl (t') 

(A7) 

For the purposes of (Al) we need 

lim~ (TftE{K(t)K(t')}dt'dt. (AB) 
T'" 10 0 

The top left block of this is 

lim ~ fTft E{- Kl (t)K1(t') +K2(t)K2(t')}dt' dt. (A9) 
T." 0 0 

From (A5) the first term in (A9) is a linear integral 
operator acting upon 2 x 2 matrices whose kernel is the 
matrix function 

- lim ~ (T f t f (I k I + 10"1)( 10"1 + I s I) 
T'" 10 0 R3 

xexp(-iv[(lkl-IO"I)t+(IO'I-lsl)t']) 

XE{TT(k)e (k - 0", t)T(U)TT(U)€ (u - s, t')T(s)}du dt' dt. 

The pq entry of this may be written 

-lim~ (T (Tf (Ikl + 1(01)(lul + lsi) 
T'" 10 Jo R3 

xexp(-iv[(lkl-IO"I)t+(IO"I-lsl)(t- r)]) 

X Tup(k)T .,.(O")T u'r(O")T v'q(S) 

XE{ E uv(k - 0", t)€ u'v,(O" - s, t - r)}dO" dt dr, 

(AID) 

(All) 

where we have changed variable of integration from t' 
to r = t - f' and inverted the order of integration. From 
(4. 16) we may write this as 

- (2 1T)3j (Ikl + /0"1)25(k+&)Tup (k)T .... (0")Tu'r(U)Tv'q(s) 

1 ITfT ~ XlimT Ruv.tlv.(k-O", r)exp(iv(/k/-IO'I)r]dtdrdu 
Ttoo 0 T 

=;- (21T)35(k-s) j(/k/ + 10"1)2Tup(k)T .... (0")Tu'r(0")Tv'q(s) 

x S:Vru'v.(k - 0", I k I - /u I) dO". (A12) 
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This result contributes the fourth term on the right in 
(4.19). 

This is the contribution of -K1(t)K(t') in (A7). The 
contributions of the other terms may be calculated in 
a similar way. In like manner every part of the various 
terms in (A6) may be calculated. 

It is found that the operator KK of (AI) is reducible in 
that the blocks containing W, W* in (A3) are invariant 
under the action KK, and so are the blocks containing 
V, V*. [It is found, for instance, that the off-diagonal 
blocks in (A 7) are zero. ] This implies that the equation 
for the evolution of W, W* decouples from that for V, 
V*. We have written only Eq. (4.19) for W, W* since 
V, V* are not related to the Stokes parameters. 
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Gauge transformations and normal states of the CCR 
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Let w be any normal state on the CCR·algebra, and TX the gauge transformation corresponding to the 
continuous character X on the test function space as an Abelian group; denote by K the set of these 
characters; then we prove that the linear hull of [woTxIxEK] is norm dense in all normal states. It is 
also proved that the theorem is in general false if we take the convex hull. 

I. INTRODUCTION 

Let (H, a) be a separable symplectic space, i. e., a 
real vector space H, equipped with a regular, antisym
metriC, real bilinear form u; and "'(H, u) the C*-Weyl 
algebra built on (H, u) (see Ref. 1); it is generated by 
the Weyl functions W: 

Ww(<P)=O if ljJ* <P 

=1 if ljJ=<p 

with product law W. W 4> = W,,+ 4> exp[ - ia(ljJ, <P)] and involu
tion (Ww)* = W_ Ib • 

Any operator Jon H satisfying J+ = -J("+" adjoint 
with respect to a), .P = - 1 (unit operator), S J( ljJ, ljJ) 
= - a(JljJ, ljJ) > 0 for aU ljJ* 0, defines a complex structure 
on the real space H and a state wJ on il(H, a): wJ(W.) 
= exp[ - is J(ljJ, 1jJ)]. It is a pure quasifree state or Fock 
state. 2 Consider it GNS-representation 1T on the Fock 
space H, and denote by &1 the cyclic vector of the rep
resentation of the vacuum state; then W J(x) == (&1, 1T(X)&1), 
x", il(H, a). In the following everything will be performed 
with respect to the representation 1T; therefore, we drop 
it and write wJ(x)=(&1,x·&1). Any state W such that wp(x) 
== Trp x, where p is a positive operator such that Trp = 1 
is called normal state on il(H, a). Furthermore, the real 
vector space H can be seen as an Abelian group: Let X 
be any character of this group; then define T x as a *
automorphism of il(H,a) by Tx(W,,)=X(I/I)W,,. As Tx is 
isometric with respect to the C*-norm, it extends to 
il(H, a). These automorphisms are called Gauge trans
formations. Denote by K the set of all a-continuous 
characters, i. e., X EK if there exists a 1jJ,=- H such that 
X (<P) = exp[ - 2ia(ljJ, <p)] for all c/J E H. Then the corre
sponding Gauge transformation is inner: 

Tx(X)=W"xW.", x,=-il(H,a). 

In this paper we prove the following theorem: Let w 

be any normal state on the CCR; then any other normal 
state can in norm be approximated by linear combina
tions of the states W· T x with X'=- K. 

Also an explicit proof is given of the fact that the 
theorem is not true if only convex combinations of the 
gauge transformed state are taken. We have not to 
stress the usefulness of such a theorem. A particular 
case is the following: If w is a quasifree state,2 then 
also W' Tx is quasifree. Hence all normal states can in 
this way be approximated by quasifree states. 

In fact the theorem is a generalization of a theorem 
due to Rocca, 3 also using for the proof a completely dif
ferent technique. It is a generalization to infinitely many 
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degrees of freedom and the approximative states are not 
only coherent states, but arbitrary normal states. Our 
proof yields also a new proof for finite degrees of free
dom not using analytic function techniques. 

Finally we remark that the result of Lemma II. 2 may 
be a useful tool in its own, for the study of quasi
equivalence between continuous states on the CCR. 

II. THE APPROXIMATION THEOREM 

Let (H n)n '=- N be an increasing and absorbing net of 
finite, J-invariant subspaces of H such that the real di
mension of Hn is 2n. Consider the symplectic basis of 
Hn: {e i ;Je/ liE (1, ... ,n)}, i. e., it is a basis of Hand 
{e/ Ii E (1, ... , n)} is an orthonormal set for sJ and 
sJ(epJeJ)=O for all i,j. Then any element ljJ,=-H can be 
written in the form 

~ 

ljJ= 6 (xiei+y;Je j), XpY.;c=R. 
1=1 

By d ljJ we denote the Lebesque measure with respect to 
this basis, i. e., when restricted to H n 

dljJ I H.= ~ dXj dYj' 
i=l 

Furthermore, </In=Z~=l (xjei+y;Je j) is the projection 
of ljJ on Hn' Finally denote by &1" the dense set of vectors 
of H given by &1" == W" &1; they are also called the co
herent state vectors. 

The proof of the theorem is performed by a number 
of steps, formulated in the following lemmas. 

Lemma 11. 1: With the notations of above, the 
operators 

~= (1/1T)· L (&1", W-4>n &1,,)W<l>n d <Pn 
n 

form a decreasing sequence of projections in /3(H) (all 
bounded operator on H); hence P"=limnP; exists, and 
it is the projection operator on &1,,_ 

Proof: As the Fock representation is continuous and as 

IIP~II "'(1/1T)n 1 exp[-sJ(c/Jn' <pn)/2]dc/Jn<co, 
Hn 

by the Lebesque dominated convergence theorem the 
operators exist in B(H). Trivially (P';,)* = P~. Now we 
prove that for m >--n then P;P!==P!. Let us calculate 

7T
n
>", P; P! =.~ d~m(~" ; W'{m ~.)I(~m)W~m' 

m 

where 
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= 7T". 

This proves that P: is a decreasing sequence of projec
tions. Furthermore, analogous calculations yield 

p~n.=n. forallnEN, 

QED 

Lemma ll. 2: Let A be a bounded operator on H, i. e. , 
A E B(H), and w any normal state on ~(H, 0'); then the 
function on H 

<J; -A(<J;)=[l/w(W.)]J d¢ w(W_4> AW4» exp[2iO'(<J;, ¢)] 

is square integrable if and only if A is of Hilbert
Schmidt class in B(H) and 

TrA*A = J d~IA(<J;W, (*) 

where d1J! stands for (l/7T)"dz/J" when restricted to Hn' 

Proof: As the state w is normal, the map ¢ E H 
- w(W_~AW~). exp[2iO'(<J;, ¢)] is measurable and the 
function A(<J;) is defined for all A E B(H). As the finite 
rank operators are dense in the Hilbert-Schmidt 
operators and as the set of vectors {n *' z/J E H} is a total 
set in H, it is sufficient to prove the relation (.) for A 
=P*, where pI/! are the projection operators of Lemma 
ll.1. A straightforward calculation shows 

A(<J;) = [l/w(W.)J J dcJ> w(W_4>AW~)exp[2i<T{<J;,¢)] 
H 

and 

TrA*A= J d~ITrAW_(12; 
H 

hence TrA *A = fH dIP /A(<J;) /2 QED 

Remark: The lemma remains true if we replace the 
condition "w a normal state" by "w a continuous state. " 

Lemma ll. 3: Let p be any denSity matrix in B(H); 
then the set of trace dass operators {W.P»:b Iz/JEH} is 
trace norm dense in the set of all trace class operators. 

Proof: The set 111 of trace class operators is an ideal 
of B(H), and 111 equipped with the trace norm a Banach 
space; the topological dual I1t is B(H), and we prove 
that the topological dual of the set {W"pW_,,11J! E H} is also 
B(H), by showing that this set of operators is separating 
for B(H). Therefore, let S'=- B(H) such that 

TrSWq,pW_4>=O for all ¢ EH 

or, in terms of the state wix)=Trpx, this is equivalent 
to wp ( W_~S W<j» = 0 for all ¢ E H, yielding, in the nota
tion of Lemma II. 2, S(z/J)=O; hence TrS*S=O and S==O. 

QED 

Theorem ll.4: Let wp be any normal state on a(H, 0"); 
then the linear hull of the set of linear functionals gen
erated by {wp • T X I X'=- K} is norm dense in the set of 
normal state on a(H, 0"). 

Proof: As wp is a normal state, it can be written as 

Wp(X) = Trpx :XE B(H), 
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where p is a density matrix (i. e., p '" 0, Trp = 1) and 

Wp(T x(x»== TrpTx (x) = TrpW~xW_. = TrW_. pW. x. 

Also as TrW_.pW. = Trp = 1, the gauge transformations 
map normal states into normal states or, stated other
wise, map the set of density matrices into itself. 
Furthermore, the well-known relation 

IIw. - wp II = sup [i 'Fr(Pl - P2)(X) I /lIxllJ 
1 2 x'=-B(H) 
= Tr[(Pl - P2)2]1 /2 = Tr I PI - P21 

connects the norm topology on the normal states with 
the trace norm on the density matrices. From this it 
follows that the statement of the theorem is equivalent 
to the statement of Lemma II. 3 and hence the theorem 
follows. QED 

In the following theorem we show that it is not true 
that the convex hull of {wp • T x IX E K}, where wp is any 
normal state, is norm dense in the set of normal states. 
The proof is only given for wp=w" (the Fock state). A 
special case of this situation is known in the domain of 
quantum theory of optical coherence in the following 
form. Let H" be finite dimensional then in the so-called 
P-representation 10 of the density matrix p: 

p = f p. P(<J;)d<J;, 
Hn 

where P I> is defined in Lemma II. 1; it is known that the 
function ljJ-P(<J;) is not necessarily positive definite. 5 

Explicit examples of the function P(IJ!) are known with 
P(IJ!} negative on sets of nonzero measure. 6 

Theorem ll. 5: Let w" be the Fock state on a(H, 0"); 
then there exists a normal state Wo which do not belong to 
norm closure of the convex hull of {w J ' Tx IXEK} 

Proof: Let AI be the element of B(H), defined by 

AI = t I: dyexp(- Iy I) WyJe j 

for a fixed index i. By spectral theory one gets 

AI= 1/(1 +~), 

where PI is the momentum operator (i-component) de
fined by 

PI=s-lim [(WyJe l -l)IY]. 
y-O 

Hence, spectrum A, = [0,1]. Furthermore, 

w ,,( T x(A I» = t [, dyexp(- I y I )x(yJe j ) exp(- y2/4) 

and 

sup w,r(Tx(AI»=1'< 1; 
x 

therefore, for aU w in the convex hull of {w". Tx IXEK} 

w(Aj) <1'. 

However, as spectrum AI = [0, lJ there exists a normal 
state Wo such that 

1'< w(A j )"; 1; 

therefore, Wo does not belong to the norm closure of the 
convex hull of {w,r' Tx IXEK}. QED 

III. DISCUSSION 

About the techniques used let us remark the following. 
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The projection operator of Lemma n. 1 is a special case 
of a more general result which is easily proved at least 
for finite dimensions, namely let w be a normal state; 
then w(x) = Trpx, x E B(H) and the density matrix is 
given by 

p = (l/1T)n iH d!jJ w(W_~)W., 

where the integral is in the strong operator topology. 

This formula answers, by an explicit construction, 
the question: given a state w, what is its density matrix? 
Note the difference with the map !jJ - A(!jJ) of Lemma 
n.2, which is essentially the Wigner phase-space quasi
probability distribution, as studied by Moyal, 7 Pool, 8 

Loupias and Miracle-Sole 9 for finitely many degrees of 
freedom (H::= Rn + R n). In Lemma II. 2 this condition is 
removed, and this should encourage the possibility of 
studying the Weyl correspondence and Wigner quasi
probability density function in quantum field theory. Also 
the map of Lemma n. 2 is related to the "reproducing 
kernel" of McKenna and Klauder4 in their study of 
representations of the canonical commutation relation. 

Finally let us point out the physical relevance of the 
theorem. As said before in the Introduction, the theorem 
is a generalization of the optical equivalence theorem, 
widely used in quantum optics. We do not insist more 
on this point, but refer to the litterature; see, e. g. , 
Refs. 3. 

It is a generalization in the sense that the approxi
mative states are not only coherent states, but arbitrary 
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normal states. In quantum mechanics we think about 
the treatment of perturbed solvable models. The global 
solution may be written in terms of the solutions of the 
solvable model, which has not to be a coherent state. As 
it is a generalization to infinitely many degrees of 
freedom, its usefulness in statistical mechanics is 
manifestly clear. 
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A new class of exact solutions of the Dirac equation with external electromagnetic fields is derived 
by assuming a set of field-dependent solution matrices which obey an algebra isomorphic to the Pauli 
matrices. The method of exact solution may be applied to any field having a four·vector potential 
A p. depending only on k "x p.' but for which the field tensor and initial electron momentum are such 
that A "A ". A "p p.' (cr"vp ".)2. and (ol'"F;v)2 are independent of k"xjJ.< Exact solutions for a 
circularly polarized propagating electromagnetic wave in an isotropic medium. for a screw symmetric 
static magnetic field. and for a rotating uniform electric field are given in termS of the roots of a 
quartic equation. A class of solutions is given explicitly in the weak field limit to lowest order in 
e A 1m c 2. The vacuum limit of the solution of a wave propagating in a medium is shown to be the 
Volkov solution. 

I. INTRODUCTION 

Exact solutions of the Dirac equation have been found 
for only a few external field configurations. The most 
important exact solutions known are those for the 
Coulomb potential, 1 homogeneous electric and magnetic 
fields, 2,3 and the field of a plane wave in a vacuum ... 
In this paper we derive a new class of exact solutions 
which is applicable to a variety of fields, including 
electromagnetic waves for which the length of the wave 
four-vector is nonzero. 

In the next section we outline the conditions which 
must be satisfied by fields which allow exact solutions 
by the techniques of this paper. The exact class of so
lutions is derived in Sec. Ill, and written in terms of 
the roots of a quartic equation haVing two field dependent 
parameters. The parameters are given explicitly for a 
circularly polarized electromagnetic field in a medium 
with refractive index n> 1, for a magnetic field with 
screw symmetry, and for a rotating electriC field. 

In Sec. IV we derive explicitly several limiting cases 
of the exact solutions given in Sec. III. In the vacuum 
limit we treat a Circularly polarized propagating wave 
in a medium to retrieve the Volkov solutions. We also 
present the "weak field" limit of the solutions valid for 
eA/mc2 «1. 

II. THE CLASS OF SOLUTIONS DEFINED 

In the following we shall use the metric gOo = _ gH = 1, 
and the scalar product of the four-vectors x'" and y" 
will be denoted by xy. We shall set If = c = 1. The four
potential A'" is taken to depend on the four-coordinates 
only in the combination 1> =kx, where k'" is the "wave 
four-vector. " A '" shall satisfy the Lorentz gauge condi
tion oA =A'k = 0, and the field tensor can be written 
F""=A~k,,-A~k,,. A prime denotes differentiation with 
respect to the "phase 1>. " 

All matrices are 4 x4. We define an antisymmetric 
tensor a"" having components 

with i,j, k == 1, 2,:3 in cyclic order, and 
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0'0" ==iczk =i [0" u"] 
0' 0 . 

The u" are the usual 2 X2 Pauli matrices. 

In order for the Dirac equation to be exactly solvable 
by the methods of the following section, the four-poten
tial of the field must satisfy the following conditions: 

A 2, Ap, (0'1'''F",,)2, and (u"'''F~,,)2 must all be indepen
dent of 1>. 

Throughout this paper P" denotes a constant four
vector satisfying the condition p2 = m 2• When the field 
is removed, PI' becomes the free particle four
momentum. 

In all that follows we shall take the following as our 
particular choice of particle motion and field: 

AjJ.(1)) =a(O, cos1>, sin1>, 0), a =const., 
(1) 

p" = (Po, 0, 0,P3), kl' = (ko, 0, 0, k 3). 

This choice satisfies the conditions above, and al
lows for a variety of interesting solutions, but does not 
exhaust the number of fields for which exact solutions 
may be found by the methods of this paper. 

III. A FORMAL DERIVATION OF THE CLASS OF 
SOLUTIONS 

The Klein-Gordon equation, 

(- a2 
- 2ieAo + e2

A2 - m 2
) Zo = ° (2) 

is known to have the solution5 

Zo == exp(iS) , (3) 

where the claSSical action 

is the solution of the Hamiltonian-Jacobi equation. 

The useful constants Rand b are defined as 

R =kp{1- [k2/(kP)2][(p _ eA)2 _ m 2]}1 /2 

== kp[l + e2a 2k2/ (kp)2]1/2, 

b == - iR(k2t1, 

and the positive root is taken. 

Copyright © 1975 American Institute of Physics 
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The Volkov solutions to the Dirac equation are of the 
form Yo exp(iSo), where Yo is a field dependent matrix 
front factor, and So is the classical action for an elec
tromagnetic field in a vacuum. We therefore assume 
the form Y(1J) Zo for our solutions, with Zo defined in 
(3). An equation satisfied by Y(1J) can be obtained from 
the second order Dirac equations 

(- a2 _ 2ieAa + e2A2 - m 2 + ~ea"'/I F ,..,,) YZo = O. (6) 

Direct substitution of (3) and (4) leads to 

Y" (1J) + 2bY'(1J) - fO(1J) Y(1J} = 0, 

where f is a constant scalar 

f=-iea(k2t1!2, 

and 0 is the 4 ><4 matrix 

0(1J) =- (fk
2t 1 tea"''' F"'/I 

or 

0(1J) = (k2rl/2( Q:2kO - ia23k 3) exp(iO'121J} 

for our choice of field (1). 

Equation (7) can be solved by assuming that Y is a 
linear combination of the four matrices 

11.,0'12, 0(1J), 0' (1J), 

(7) 

(8) 

(9) 

(9') 

whose algebraic properties are isomorphic to those of 
the 2 x2 Pauli matrices: They form a closed set under 
multiplication (to within a constant phase factor), the 
square of each is 11., and all but the unit matrix are 
traceless and anticommute with each other. The matrix 
0' is 

0'(1J) = ao/a1J =iOo12. (10) 

Letting 

Y(1J)=t(1J) i1 +u(1J)a12 +v(1J) O(1J)+w(1J) 0'(1J) (11) 

and using (10), the anticommutation relations 

(12) 

and the relation 

0" =iO,0'12 = - 0, (13) 

we substitute (11) into (7) to obtain four coupled scalar 
equations in the four unknown scalar functions of 1J: 

t"+2bt'-jv=0, 

u" + 2bu' - ifw =0, 

v" + 2bv' - v - 2w' - 2bw - ft = 0, 

w" +2bw' - w +2v' +2bv +ifu = O. 

(14) 

The solutions of the first order Dirac equation are 
easily obtained from the solutions of the second order 
equation. Therefore, finding a class of exact solutions 
to the Dirac equation is contingent only On the ability 
to solve the system of equations (14) exactly. 

We proceed to solve (14) exactly by defining new 
variables 

1)=t+u, ~=t-u, v=v+iw, f,J.=v-iw. (15) 

Equations (14), written in terms of the new variables, 
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become 

r/" +2b77' =fv, ~" +2be =fJl, 

(vexpi1J)" +2b(vexpi1JY =f(1) expi1J) , (16) 

(j..L exp(- i1J»)" + 2b[j..L exp(- i1J»)' =f(~ exp(- i1J)]. 

These equations are equivalent to two uncoupled, 
homogeneous, linear fourth order equations in 1) and 
~, or alternatively in v and j..L. The solutions are 

77 = t CJ exp (rJ1J), ~ = t D, exp(rt1J), 
J-1 !a1 

v=r1 t CJ(~+2brJ)exp(rJ1J), (17) 
1=1 

where the r, are the roots of the quartic equation 

r 4 +2(2b +i) r3 + (4b2 + 6ib _1)r2 

+2b(2bi-1)r-f2 ",0 (18) 

and the rt are the roots of the same equation with the 
explicit i replaced everywhere by - i. (This is not the 
complex conjugate equation, since band f can be 
imaginary. ) 

There are eight arbitrary constants, CJ and D" cor
responding to the eight independent solutions of the 
second order equation, The solutions ifJ(1J} of the first 
order Dirac equation, 

(y(io - eA)- m]$(1J)=O, (19) 

are given in terms of the solutions Z(1J) of the second 
order equation by 

ifJ (1J) = [y(iil - eA) +m] Z(1J), (20) 

Thus the most general exact solutions of the first order 
equation of the class considered are 

$( 1J) = [ y(i a - eA) + m] [ ( T) ; 9 i1 + (1] ~ ~) (712 

+ (v;j..L) 0+ f';/) 0'] exp(iS). (21) 

It is convenient to choose the arbitrary constants C j 
and D, so that when 1J 0: 0, the solution resembles a free 
particle solution of the first order Dirac equation. This 
choice implies the eight conditions 

Z(O): n. exp(- ipx) (22a) 

and 

1P(O) = (y(p - eA) +m) Z(O). (22b) 

These "initial" conditions impose in turn eight condi
tions on the constants C J and D, (all summations are 
from 1 to 4): 

L;C,=l, 

L; CJrJ"'O, 

rlL; C,rJ(r J +2b) =0, 

:6 DI = 1, (23a) 

L; Dirt = 0, (23b) 

r1~ Dlrj(rj+2b):0 (23c) 

F.S. Felber and J.H. Marburger 2090 



                                                                                                                                    

(yko,)f-l ~ D,rt(rt +2b)(rt - i) ",0. (23d) 

Now for any field which satisfies (1), we need only 
specify the values of the parameters b and I in (18) in 
order to have the exact solutions for a Dirac electron 
in that field. 

Consider for example k3 =nko• Then for the field and 
initial electron motion given by (1), the solutions (21), 
together with conditions (17) and (23), represent the 
exact solution for a Dirac electron emitted in the direc
tion of propagation of a right circularly polarized elec
tromagnetic wave in a transparent, isotropic medium of 
index of refraction n. For this case the values of the 
parameters b and I are 

b _ i(pQ - nPa) (1- e
2
a

2
(n

2 
- 1») 

,,- ko(n2-1) (PO-nP3)2 (24) 

In = eaki/(n2 - 1t1 12. 

Or we may consider ko = ° in (1). Then (17), (21), and 
(23) represent the exact solution for a Dirac electron 
emitted parallel to the screw symmetry axis of the 
static magnetic field B =ak3(icosksXa - j SinksX3)' 

For this case b and! take on values 

bB = - iPak3't[l- (ea/Pa)2]1 /2 and IB = eak;l. (25) 

Similarly if we let ka = ° in (1), then (17), (21), and 
(23) represent the solution for a Dirac electron emitted 
parallel to the rotation axis of a rotating uniform elec
tric field. The relevant parameters for this situation 
are 

IV. LIMITING CASES OF THE EXACT CLASS OF 
SOLUTIONS 

(26) 

The solution of the quartic equation (18) is not trivial 
in general7 and, once found, does not provide much in 
the way of new physical insights. There are, however, 
several interesting limits of the exact solutions. We 
consider in this section the weak field limit for the en
tire class of solutions and the vacuum limit for a propa
gating electromagnetic field in a medium. 

A. Weak field limit 

In dimensional units, the parameter I has magnitude 
1/1 =ea/lickoe, where e=(k2)t/2/ko. This may be written 
as 

(27) 

in which E is the peak amplitude of the electric field 
associated with a and Ea is a scaling field. To be 
specific, we shall assume ka=nko• The energy density 
corresponding to Ea in cgs Gaussian units is 

(n2 + 1) EV81T = (lic/e2). 21T2 'liw~a(n2 + 1) 

= 5.375 xI0-13(n2 + 1)/~, (28) 

where ~=21T/ko=21TC/W. The corresponding power 
density for Ao =1 j.J.m is 8 x I06 watt/cm2, which is a 
modest field strength with current laser technology. We 
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find below, however, that to lowest order in I only the 
combinationl/b appears, which has magnitude (for 

IPal «me) 

II/be I =: (eE/mwe). (29) 

This dimensionless quantity is ubiquitous in treatments 
of the motion of charged particles in intense plane radi
ation fields. 8 When eE/mwe approaches or exceeds 
unity, the particle motion is relativistic. Thus the weak 
field limit below is equivalent to the nonrelativistic 
limit. The power density at ~ = 1 j.J.m corresponding to 
the field ER=mwc/e is 8. 7xI017 watt/cm2

• 

In the limit I f I «1, where f = 1/2b, we shall work to 
order f2, but for Simplicity present the solutions only 
to order f. 

To order f2 then, the constant b and the action take on 
the values 

(30) 

The roots of the quartic equation (18) and its sister 
equation to the same order are 

rt=At. r2=-2b+~, 

r3=- i - .012, r4 =- 2b- i- At. 

rT =- .012, r~=- 2b- At. 

rt=i+Ah rt=-2b+i+A2' 

where 

(31) 

With these values for the roots, 
(23) require the constants to be 

the initial conditions 

C =1- (8b
2
(1- 2ib) +1-4ib) 

1 (1 + 4b2)2b 

(
1- 2ib) Al 

C2 = 1 + 2ib 2b' 

Da=- (12~~:b) .012, 

D4 = (1: :ib) .012, 

Thus the solution of the Dirac equation to order f, 

for any field satisfying (1) and (23), is 

(33) 

1/J(<P) =: (y(P - eA) + m]( II. + A) exp(iS), (34a) 

where 

.01=- tb {(2ib - 1 rl(2ib + e-1q, (1 - 2ib _ e-2bq,)] 

x (0,' + in) + (2ib + 1)-1(2ib - e1q, (1 + 2ib _ e-2bq,)] 

x (0,' - in)}. (34b) 
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B. Vacuum limit 

In the vacuum limit we shall consider kl' =ko(l, 0, 0, n), 
and let k 2(eat2 approach zero by virtue of n -I, and 
not by ko - O. Then f2 and b both approach infinity as 
(k2t t , and the action approaches the limiting value 

(35) 

Keeping only terms of the highest order in (k2t t , we 
find the roots of (18) and its sister equation to be 

rl=-ie2, r2=-i, r3=-2b, (36) 
rt=i€2, r~=i, r~=-2b. 

There are only six unique roots corresponding to six 
independent solutions. Fortunately, there are only six 
initial conditions as well. Since ykn vanishes in the 
vacuum limit, Eqs. (23d) do not represent conditions on 
the constants in this limit. 

Substitution of (36) into (23) yields 

Ct =D1 =1+€2, C2 =D2=-€2, C3=D3=O. (37) 

Thus the exact solution of the Dirac equation for an 
electron emitted parallel to the direction of propagation 
of a right circularly polarized electromagnetic wave in 
a vacuum is found to agree with the Volkov solution4; 

1J!.,ac = [y(p - eA) + m ]{il- €[n'(l- cos</» - n sin</> ]}exp(iS) 

= [y(P - eA) + m Hil + [ea(k2)1 /2/2kp ][n'(</» - n'(O)]} 
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xexp(iS), (38) 

where S is given by (35). 

This solution could have been obtained directly from 
(34) as well by simply letting b approach infinity in the 
expression for ~. 
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On the determination of the relativistic wave equations 
associated with a given representation of S L (2,C) 
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Straightforward algebraic techniques are presented and used to determine the structure of wave 
equations whose relativistic covariance is governed by two representations of S L (2,C), S o(A) = 
(1,1/2) Ell (1/2,1) Ell (1/2.0) Ej) (0,1/2) and Sl(A) = So(A) Ell (1/2,0) Ell (0,1/2), subject to the 
requirements that the equations should be parity preserving, admit an invariant Hermitian bilinear 
form realized by a numerical matrix 1/, and that they should describe a particle with a unique mass 
and spin. It is shown that S o(A) leads to a unique algebraic structure, that of the Rarita-Schwinger 
equation, whereas S l(A) leads either to a trivial extension of the former case or to a family of 
equations whose matrices have a minimal algebra with degree one higher than that of the former 
case. One such example reproduces the equation presented by Glass. When, contrary to custom, a 
singular 11 matrix is considered, it is shown that S l(A) allows for equations whose coefficient 
matrices are reducible but indecomposable. These equations are completely equivalent to the 
Rarita-Schwinger equation in the free case, but the added components may enter the dynamics in 
the presence of certain interactions. The present examples serve to illustrate techniques which may be 
applied in the study of any relativistic wave equation. 

I. INTRODUCTION 

A relativistic wave equation describing free, massive 
(m > 0) particles may be written in the general form 

(it3· 0 - m) 1>(x)=O (I. 1) 

where 13" represents four NXN numerical matrices with 
the property that 

(I. 2) 

where SeA) is the N-dimensional representation of 
SL(2, C) which governs the index transformation of 1> 
under the Poincarf! group P, 

1>~(x)=Sa8(A)1>I>(Klx+a), QI,t3=1, ... ,N, (1.3) 

A being the homogeneous Lorentz transformation and a 
the space-time translation. 

In a recent study 1 straightforward constructive alge
braic techniques 2 were used in order to classify under 
very general conditions the possible SeA) which may be 
associated with 13" which satisfied a given algebraic 
condition. A large class of such SeA) was thereby enu
merated. In the present note we shall employ these 
same constructive techniques in order to determine all 
possible 13" associated with a given SeA). More specifi
cally; we shall examine the representations 

(I. 4) 

and 

(r. 5) 

and seek all possible 13" which are covariant, parity 
symmetric, yield a unique spin-3/2, a unique mass 
m > 0, and permit the existence of a Hermitianizing 
matrix 1). 

We shall find that these general restrictions deter
mine a unique t3-algebra in the case of So(A) and a very 
limited number of possibilities for Sl(A). The Rarita
Schwinger (R-S) equation 3 and the Glass equation 4,5 

are recovered in addition to other related possibilities. 
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By relaxing the requirement that 1) be nonsingular we 
are led to a new class of equations for SI(A) which have 
reducible but indecomposable f3 matrices. These equa
tions are completely equivalent to the R-S theory in the 
free case but may deviate from the latter's predictions 
in the presence of interactions. We refer to the addi
tional components as "barnacles. " 

In the next section we shall present our basic assump
tions and apply them to So(A) and SI(A) in Secs. III and 
IV, respectively, giving a complete listing of the pos
sible wave equations associated with each representation. 
In Sec. V we shall briefly discuss the physical signi
ficance of the various possible wave equations and of the 
new barnacled equations. 

II. ASSUMPTIONS 

We shall impose the following restrictions upon the 
wave equation (I. 1): 

(1) Equation (I. 1) is covariant under the proper 
Poincarf! group and hence the S(A) and i3" must satisfy 
Eq. (I. 2). In terms of the generators of rotations and 
boosts, J I and N I , in the representation S(A) this re
quirement may be stated entirely in terms of 13

0 
as 

[J j ,i3o]=O, 

[[N3 , f3o], N3 ] = f3 o' 

(II. 1a) 

(II. Ib) 

(2) Equation (I. 1) is covariant under space reflection, 
1. e., there exists a numerical matrix P such that 
[x' = (xo, - x) J 

¢'(x') == Qlt?1>(x) (II. 2) 

where Ql p is a phase, P2=I, and 

[f3o'PJ.=O, 

[i3pPJ.=O, i=1,2,3. 

(II.3a) 

(II.3b) 

Such a matrix will exist only if S(A) is self-conjugate, 
1. e., composed of representations of the form (n, n) or 
(n,m)EB(m,n). It will have matrix elements which are 
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nonvanishing only in those blocks which connect conju
gate representations and there it will be a multiple of 
the identity. For the two representations So(A) and Sl(A) 
we fix the relative scale of the conjugate components 
such that 

A~ • 

Ao '" (1, i) EB (0, i), 

Ag '" (t 1) EFl ( to) 

Al =AoEB (0, t), 

Ai =Ag ED (1,0). 

i=O,l, (n.4) 

(n.5a) 

(II. 5b) 

(n.6a) 

(II.6b) 

(3) We assume that there exists an invariant, 
Hermitian bilinear form realized by a numerical matrix 
71 satisfying 

St(A)7J S(A) =71 for all AE P, (II. 7a) 

P7JP-l=1), (II.7b) 

1)=17\ (II. 7c) 

and 

1) {3", = (3:17. (II.7d) 

Note that we have not made the usual assumption that 71 

is nonsingular. 

(4) Equation (I. 1) is assumed to describe a particle 
of unique mass m. This means6 that {3", must satisfy the 
algebraic relation 

({3 • p)"= ({3 • p)"-2 p2 (II. 8) 

for some n where p is any 4-momentum. In terms of (30 

this becomes 

(11.9) 

(5) Finally, we assume that Eq. (I. 1) describes a 
particle with a unique spin which we take for the cases 
considered to be s = 3/2. This means that the solutions 
of Eq. (I. 1) when written in momentum space and taken 
to the rest frame will have only eight nonvanishing com
ponents corresponding to the four spin degrees of free
dom for s = 3/2 and the two signs of the energy. 

The representations considered here contain only two 
spins, 3/2 and 1/2, the s = 3/2 representation occurring 
twice and the s = 1/2 representation occurring four and 
six times for the So(A) and Sl(A) representations, re
spectively. We may accordingly decompose 13 0 into two 
submatrices which act only between components of the 
same spin: 

(11.10) 

and from assumption (5) we have the characteristic 
equations for these submatrices 
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(II. lla) 

and 

(II. lIb) 

for some N. From this viewpoint we see that it is the 
degree of nilpotency of the auxiliary spins which will 
determine the order of the algebra (11.8).7 

In the next two sections we shall seek the most gen
eral wave equations associated with the particular rep
resentations So(A) and Sl(A) when subject to the above 
restrictions. 

III. THE STRUCTURE OF WAVE EQUATIONS 
TRANSFORMING VIA So (A) 

Using the generators of SO(A)B and invoking Eqs. (11.1) 
and (II. 3a) we may write the general form of 13 0 in this 
representation as 

where 

3/2 1/2 

mu 0 

0 -1mll 

0 m 32 

o 

o 

AC o 

1/2 

0 

m 23 

m33 

3/2 

1/2 
(1, t) 

1/2 (0, t) 

mijEC, 

which satisfies assumptions (1) and (2). 

(III. 1) 

(III. 2) 

Let us now invoke assumptions (4) and (5). We have 
from Eqs. (11.11) that 

(III. 3) 

and 

M f/2 = 0 for some N. (III. 4) 

Equation (111.3) implies that mil = 1 and we take m 11 
= + 1. This involves no loss of generality and corre
sponds to the freedom of picking the overall sign of {3 .... 
Equation (III. 4) then implies that 

N 

- 1/2 m 23 

=0 (nI. 5) 

for some N. 

Since the cases N = 0 and N = 1 are not possible and 
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since dim(M 1/2) = 2, N = 2 is the only possible exponent 
in Eq. (III. 5). This leads to the conditions 

(m.6a) 

and 

(III.6b) 

We shall now consider assumption (3). The most gen
eral17 matrix for So(A) satisfying Eqs. (II. 7a)-(II. 7c) 
may be written as 

Ao Ag 

(m.7) 

with 

3/2 1/2 1/2 

171 0 0 3/2 

(IV. 1) 

where 

(IV. 2) 

o NI/2 

N3/2 is a multiple of the (four-dimensional) identity, 
N3 /2=V, and 

- t>< a12 a13 

a21 az2 a23 (IV. 3) 

aSI a32 a33 

The assumptions (4) and (5) will again be satisfied if and 
only if x 2 = 1 (we again take X = + 1 with no loss of gen
erality) and either 

(IV. 4) 

17= 0 171 0 1/2, 171 ER. (III. 8) or 

0 0 172 1/2 

Equation (11. 7d) tells us that 

ijM =MtiJ 

or that mu and m33 are real and 

(III. 9) 

(111. 10) 

Note that in view of Eq. (111. 6b) we must have 171 and 172 
nonzero in order to avoid a trivial theory. We may also 
:ix the sign and normalization of the rest frame solutions 
by taking 171 = 1. 

The most general (30 satisfying assumptions (1)-(5) 
for So (A) is thus found from Eqs. (III. 6) and (Ill. 9) and 
is given by Eq. (III. 1) with 

1 0 0 

M= 0 1 
CY. -2 (111.11) 

0 
- 1 

-CY. 2 

where 1 CY. 12 = t. The elements of 17 in Eq. (111.8) are 
171 = 1, 172 = - 1. 

Subject to the above assumptions there is therefore 
only one algebraic structure possible for So(A), namely, 

This is the algebra which characterizes the R-S 
system. 9 

IV. THE STRUCTURE OF WAVE EQUATIONS 
TRANSFORMING VIA $1 (Al 

(III. 12) 

Again by constructing the generators of SI(A) (Ref. 8) 
and impOSing assumptions (1) and (2), we are led to the 
general form 

2095 J. Math. Phys., Vol. 16, No. 10, October 1975 

(IV. 5) 

the degree being bounded by the dimensionality of the 
matrix. There are thus two distinct algebraic 
possibilities. 

ConSider now the most general 17 matrix satisfying 
Eqs. (II. 7a)-(11. 7c): 

Al A~ 

17= r;:EJ Al 

~A~ 
with 

3/2 1/2 1/2 1/2 

171 

171 
7)= 

172 173 

1)3 7)4 

3/2 

1/2 

1/2 

1/2 

(IV. 6) 

(IV. 7) 

We may again fix the normalization of the (1, t) and 
(t, 1) components such that 7)1 = 1 and since ~ is 
Hermitian we may diagonalize it by taking a suitable 
linear combination of the identical 5L(2, C) representa
tions, thus setting 7)3 = 0 with no loss of generality. 
Finally, we may set the scale of the lower components 
such that we have 

3/2 1/2 1/2 1/2 

1 

1 
7)= 

J.L 

v 

where /1, V= + 1, - 1 or O. 

3/2 

1/2 

1/2 

1/2 

=gJ 
Ll9 

(IV. 8) 
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Equation (II. 7d) will be satisfied for (30 if and only if 

~1/.fil/2=Ni/2~1/2 (IV. 9) 

where the matrices are given by Eqs. (IV. 3) and (IV. 8). 
The conditions on the elements of Nl/2 are thus 

- (IV. lOa) ~a21 =aI2, 

vaSI = il13, (IV. lOb) 

vaS2 = ~a2S' (IV.10c) 

and a22 and ass must be real. 

We shall label the various cases according to the 
various possible values of (/1-, v). Noting that equivalent 
systems result if /1- and v are interchanged, there are 
six possibilities: (i) (1,1), (ii) (-1, -1), (iii) (+ 1, -1), 
(iv) (1,0), (v) (- 1,0), (iv) (0,0). 

(i) (/1-, v)=(l, 1). Here Eqs. (IV. 10) imply that NI/2 is 
Hermitian and hence diagonalizable by a unitary trans
formation which preserves ~ = I. But Eqs. (IV. 4) or 
(IV. 5) imply that NI / 2 is nilpotent and so its eigenvalues 
must be zero. This implies that Nl/2 = 0 which con
tradicts Eq. (IV. 3) if we are to have a nontrivial theory. 
Case (i) must therefore be abandoned. 

(ii) (/1-, v)== (- I, -1). Here Eqs. (IV. 10) yield 

1 b -z a 

-a c e (IV.ll) 

-b - d e 

!n this case e may be set equal to zero by a suitable 
TJ-preserving unitary transformation which diagonalizes 
NI/2 on the lower two components. 

(iia) If Ni/2 = 0 then it is easy to verify that either a 
= 0 = c or b == 0 = d and we are left with the R-S system 
of Sec. III trivially extended by zero entries in the 
additional components. 

(iib) On the other hand, Eq. (IV. 5) may be satisfied 
if and only if 

(IV. 12) 

This places the restriction on the elements of N1 / 2 ; 

c+d-t==O, 

t-cd- \a\2_\b\2==0, 

and 

(IV. 13a) 

(IV. 13b) 

(IV. 13c) 

If we choose any of the parameters in Eqs. (IV. 13) to be 

that consistent nontrivial solutions exist whenever 
C E (- "", 0) u (i, 00). For the special choice c = - t we 
get 

1 1 ,f£ - 2 213 13 

-1 1 0 --
213 2 Nl/2= (IV. 15) 

,f£ 0 1 --
13 

which reproduces the l3-matrices presented by Glass 4,5 

in his counterexample to the relation of Umezawa and 
ViscontL lO We see how the order of the minimal equa
tion for 130 is increased from the 13~(13~ - I} = 0 of the R-S 
equation to 13~(13~ - 1) = 0 of the Glass equation without 
increasing the highest value of the spin. We may also 
note that any choice of c which leads to nonzero a and b 
must yield a system which satisfies the higher order 
algebra. 

(iii) (/1-, v) = (1, -1). 

1 b -z a 

il c e (IV. 16) 

-b -e d 

1 0 0 

1)= 0 1 0 (IV. 17) 

0 0 -1 

The metric operator ~ will be preserved by any trans
formation of the form 

1 0 0 

T(9)= 0 cosh8 sinh 8 (IV. 18) 

0 sinh 8 cosh8 

since T·~T "'~. If we first transform the N1/2 of Eq. 
(IV. 16) by the unitary transformation 

ei~ 

F== e iB (IV.19) 

e ir 

then we may fix 0', 13, and y such that all of the elements 
of Nl/2 are real. We now transform NI/2 by T(8}: 

1 a' b' -2 

zero, then we are reduced to the case (iia) and a trivial N~/2=T(8)Nl/2T-l(8)= a' c' e ' (IV. 20) 

extension of the R-S equation. Avoiding these cases, 
we may solve Eqs. (IV. 13) and find 

-b' _ e' d' 

d=t-c, (IV. 14a) where 

\a\2=cS/(2c-t) (IV. 14b) a'=acosh8-bsinh8, 

Ib 12= (c - W/(2c - t), (IV. 14c) b' = - a sinh8 + b cosh8, 

thus parameterizing the solutions in terms of c. We see c' = c cosh2 8 - d sinh2 8 - 2e cosh8 sinh8, 
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d' = - c sinh2B+ d cosh2B + 2e coshB sinhB, 

and 

e' = e(cosh2B + sinh2B) + (d - c) coshB sinhB. 

We may now consider the following cases, 

(a) If I b I > I a I then we may have a' = 0 by choosing 
coth 8=b/a. 

(b) If lal > Ibl then we may have b'=O by choosing 
coth8 = a/b. 

(c) lal = Ibl. 

Now det(Nl/2 - A) = - A3 will hold if and only if 

c+d-t=O, (IV. 21a) 

t_cd_e2+a2_b2=O, (IV. 21b) 

- tcd- te2 
- da2 + eb2 

- 2abe=0. (IV. 21c) 

(a) Choose a=O. Then Eqs. (IV. 21) admit the solu
tions 

d=t-e, 

b2 =Hl/(e + t)], 

e2 =e3/(c+t) 

which are consistent for any c ~ O. 

(b) Choose b = O. Then we get 

d=t-c 

a2 = H1/(c - 1)], 

e2 = (2e - 1)3/a(e - 1) 

which are consistent for any e> 1. 

(IV. 22a) 

(IV. 22b) 

(IV. 22c) 

(IV. 23a) 

(IV. 23b) 

(IV. 23c) 

From Eqs. (IV. 22) we see that if e=O then e=O and 
we recover the trivially extended R-S equation and 
Ni 12 = O. For the remaining values of e we have N~ /2 

=0 but Ni/2 *0. 
(c) Choose b=€a, E=±L We then get from Eqs. 

(IV. 21) 

d=t - e, 

e2 =c2 -te + t, 
a2 = t (2e - t - 2E I e 1)"1. 

(IV. 24a) 

(IV. 24b) 

(IV. 24c) 

If E ='- 1 then these conditions are consistent for all e, 
but if E = + 1 they imply that a2 < 0 for any e. One solu
tion would be e=O: 

-1 1 -1 

1 0 1 (IV. 25) 

1 -1 1 

which satisfies ~ /2 = 0, m /2 '" O. This is, in fact, again 
always the case for type (iii) matrices. 

We now depart Slightly from orthodoxy and consider 
Singular TI matrices. These will lead to new types of 
wave equations called ''barnacled'' equations. 
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(iv) and (v), (Il, II) = (E, 0), E = ± 1. Here we have 

1 a ° -a 

€a e 0 (IV. 26) 

b e d 

with d = 0 if we demand that NI/2 be nilpotent. 
det(N1 / 2 - x) == - x 3 implies that c = t and 1 a 12 = - Et. 

Thus case (iv) (€ = + 1) cannot be satisfied but case (v) 
does admit the solution 

1 ±t ° -a 

:;:.!. 1 0 2 a (IV.27) 

b e ° 
which satisfies Ni /2 == 0 only if b = :;: e. Otherwise, we 
get ~/2 = 0, Ni/2 *0. 

(vi) (Il, II) == (0,0). Here 

1 0 0 -a (IV. 28-) 

a c e 

b e' d 

which can never be nilpotent and hence this case must 
be abandoned. 

Thus there are three classes of equations which 
satisfy all of our requirements. These correspond to TJ 
matrices of the classes (ii), (iii), and (iv). For the case 
of nonsingular TJ[(ii) and (iii)] the formalism either re
duces to the R-S equation trivially extended by zeroes 
or increases by one the order of the t3-algebra by in
creasing the degree of nilpotency of the spin-t sub
matrix. As we shall see in the next section for the case 
of Singular 1'/, the "barnacled" equation is completely 
equivalent to the R-S equation in that its solutions are 
identical but the order of the 130 ' s minimal equation may 
be increased. 

V. SUMMARY AND DISCUSSION 

We have examined all possible wave equations sub
ject to general physical assumptions which transform 
according to a given representation of SL(2, C) for two 
special choices of representation. The first choice, 
So(A), led to a unique algebraic structure 

(V. 1) 

and consequently to the R-S equation. The second 
choice, Sl(A), either (1) collapsed to a trivial extension 
of the former choice obeying the same algebra or (2) 
led to an algebra which is of higher degree than Eq. 
(V. 1): 

({3 • P)3[(,3. p)2 -1] = o. (V. 2) 

One such case reproduced the theory presented by 
Glass. Higher algebras were seen to be prohibited by 
the dimensions of the nilpotent submatrices involved. 
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Finally, we considered a class of equations which ad
mit only a singular 1)-matrix. Let us consider this new 
class in more detail. 

We have from Eq. (IV. 27) (indicating the dimension 
of the submatrices) 

10 10 4 6 

~.~rn 10 

N 3 / 2 0 4 
N= (V. 3) 

NOlO 0 Nl/2 6 

and 
2 2 2 

1 1 0 -z Z 2 

1 1 0 -z z 2 • (V.4) 

b e 0 2 

The matrices thus take the structure (diagonalizing P) 
10 10 

(30 = t=Ej 10 

:"'N 10 
(V. 5) 

which may be written in the form 

16 4 

rn0 0 16 
(30 = 

Bo 0 4 
(V. 6) 

where ro is the matrix for the R-S equation and Bo 
represents the arbitrary coupling of the extra 4-spinor 
components. The wave equation thus takes the form 

(V. 7) 

from which we recover the R-S equation 

(V. 8) 

for the 16 upper components and 

(V. 9) 

for the four lower components. Once an R-S solution 
1/! is given, then 1/!B is completely determined. Hence the 
solutions to Eq. (V. 7) are the same as those of Eq. 
(V. 8). Furthermore, the components 1/!B do not enter 
the scalar product because the 1) matrix now acts as a 
projector onto the 1/! components. Thus the system 
(V. 7) is completely equivalent to the R-S system. 
Hence we have called the additional components l/J B 

which transform like a Dirac 4-spinor "barnacles. " 

Note, however, that although the barnacled equation 
defines the same set of solutions as the unbarnacled 
equation, the minimal equation of the {30 matrix may be 
changed for certain choices of the barnacle coupling. 
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Thus we have two equations with two different algebras 
but with the same solutions. 

It is easy to see from Eq. (V. 7) that all of the above 
remarks remain valid even in the presence of a minimal
ly coupled external electromagnetic field, 0" - 0" 
+ ieA". Indeed we see that a more general external 
field coupling formed from any product of {3-matrices5

•
11 

could never involve the l/JB components in the interaction, 
1. e., the equation for l/J is unchanged by the presence of 
l/JB' Barnacles may, however, enter the dynamics in a 
nontrivial way for other couplings which are now pos
sible since the (3" are reducible (but indecomposable). 
They may therefore provide a convenient vehicle for 
modifying the dynamics of a physical process while 
being guaranteed to be absent in the asymptotic states 
which are governed by the free equation of motion. A 
more general and detailed discussion will be presented 
in a subsequent study. 

We have seen that simple algebraic techniques may be 
applied to a given representation of SL(2, C) in order to 
find the structure of all possible relativistic wave equa
tions corresponding to that representation. This proce
dure may, of course, be applied to any representation. 
The present cases merely served (we hope) as 
illustrative examples. 

*Supported by the U. S. Atomic Energy Commission AT(40-1) 
3992. 

tW. J. Hurley and E. C. G. Sudarshan, Ann. Phys. (N. Y.) 
85, 111 (1974). 

2The study of the algebraic structure of first order wave 
equations has a long history. Some early references are N. 
Kemmer, Proc. Roy. Soc. A 173, 91 (1939) and H.J. Bhabha, 
Rev. Mod. Phys. 17, 200 (1945); 21, 451 (1949); in addition, 
to the work cited in Ref. 5. For a review and a general dis
cussion see the books: E. M, Co!,son, Introduction to Tensors, 
Spinors and Relativistic Wave Equations (Blackie, London, 
1953): I.M. Gel'fand, R.A. Minlos, and Z. Ya. Shapiro, 
Representations of the Rotation and Lorentz (}Youps and 
Their Applications (Pergamon, New York, 1963); and M. A. 
Naimark, Linear Representations of the Lorentz (}youp 
(Pergamon, New York, 1964). Some recent applications may 
be found in A. Z. Capri, Phys. Rev. 178, 2427 (1969) and 
A. Shamaly and A. Z. Capri, Nuovo Cimento B 2, 236 (1971). 

"lw. Rarita and J. SchWinger, Phys. Rev. 60, 61 (1941); 
S.N. Gupta, Phys. Rev. 95,1334(1954). 

4A.S. Glass, Commun. Math. Phys. 23, 176 (1971). 
5A.S. Glass, Ph.D. thesis, Princeton University, 1971 
(unpublished) • 

6J. Weinberg, Ph.D. thesis, University of California, 1943 
(unpublished); Harish-Chandra, Phys. Rev. 71, 793 (1947). 

lThat the role of subsidiary conditions is to eliminate the 
unwanted auxiliary spins in a given theory has been empha
sized, e.g., by D.L. Pursey, Ann. Phys. (N.Y.) 32,157 
(1965) in his general study. Here we have first order wave 
equations without subsidiary conditions and we see that the 
elimination of the unwanted spins is accomplished by the 
nilpotency of Po on the given subspace thus guaranteeing that 
the auxiliary spins will vanish in the rest frame. 

BSee Ref. 1, Appendices A and B. 
9For another approach to this classification see K. Johnson 
and E. C. G. Sudarshan, Ann. Phys. (N. Y.) 13, 126 (1961). 

IOH. Umezawa and A. Visconti, Nucl. Phys. I, 348 (1956). 
ttA. S. Wightman, in Aspects of Quantum Theory, edited by 

A. Salam and E. P. Wigner (Cambridge U. p., Cambridge, 
1972), pp. 95-115; and Proc. Symp. Pure Math. 23, 
441 (1972). 

W.J. Hurley and E.C.G. Sudan;han 2098 
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It is shown that a sderonomous, holonomic dynamical system with nonconservative forces moves in 
such a way that the differential equations of motion are geodesic lines in a linear connected space 
Ln' The space L n is semimetric and semisymmetric. The geodesic line on which the tangent at a 
point remains tangent if it is paraJIel displaced along the curve is simultaneously the curve of 
stationary length between two points in the space Ln. A necessary condition for the stationary 
length is derived by making use of the noncommutation rule for the differential of variation and the 
variation of differential. The noncommutation rule is obtained from a quadrilateral, which is caJJed 
the fundamental quadrilateral of variational calculus. By using the noncommutation rule, the 
variational principles of Maupertius and Hamiltonian type for nonconservative mechanical systems are 
presented. 

1. INTRODUCTION 

Under the concept of geometrization of motion we 
usually mean finding the space in which the differential 
equations of motion are identical with geodesic lines of 
the space. After the classical papersl..-3 there were 
many attempts to describe the motion of nonconservative 
dynamical systems with the help of non-Riemannian 
geometry. It was shown4-

8 that non conservative mechan
ical systems imply spaces with a more complex struc
ture than the Riemannian. In the metrical sense they 
are usually Weyl's semimetrical spaces. The connec
tion coefficients of the spaces contain together with the 
Christoffel symbols, formed with respect to the funda
mental metric tensor of the space, a part which is de
pendent on the nonconservative forces. The geodesic 
lines in this space are the curves for which the tangent 
vector at a point remains tangent if it is parallel dis
placed along the curve. In the space where the connec
tion coefficients are calculated by use of only the funda
mental metric tensor of the space, these geodesic lines 
defined by the parallel displacement are simultaneously 
curves of extremal length between two points in the 
space (Reimannian space, Finsler space, etc.). In the 
spaces of nonconservative mechanical systems this 
unique meaning of the geodesic lines is not preserved. 

It is obvious that if we want to maintain this elegant 
coincidence in the case of nonconservative mechanical 
systems, we must make some fundamental changes in 
the classical variational calculus, or, what amounts to 
the same thing, some changes in the quality of the func
tional's extremum. Recent papers10

•
11 provide a possi

bility for this. 

An linear connected space Ln is constructed, whose 
geodesic lines are equivalent to the differential equa
tions of motion of the nonconservative mechanical sys
tem. The space Ln is semimetric and semisymmetric. 
The geodesic lines are simultaneously curves of sta
tionary length between two points in the space Ln. The 
stationarity condition is obtained using the noncommuta
tion rule10

• 11 for the differential of variation and the va
riation of differential. Using the same technique the 
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variational principles of Maupertius and Hamiltonian 
type for nonconservative mechanical system are 
presented. 

2. A GEOMETRIZATION OF MOTION 

Let us consider a holonomic scleronomic nonconser
vative mechanical system with n degrees of freedom, 
where the ql are regarded as the generalized coordi
nates and t is the time. The kinetic energy of the sys
tem is 

(1) 

where gA", is the fundamental covariant metric tensor 
of second order which is a function of position q\ Greek 
indices imply a range of values from 1 to n, and, when 
repeated in a single term, summation over that range. 
Let the system be subject to the nonconservative gen
eralized forces Q"" which are functions of the general
ized coordinates, the generalized velocities q\ and the 
time, i. e., Q", =Q", (t, q, q). Then the governing equa
tions of motion in contravariant form are 

°it'" =q'" + tWIJqAq'" =Q'" (. =dldt), (2) 

where h'" "'} are Christoffel symbols formed with respect 
K 

to the tensor gAllo' and the symbol olot deSignates the 
absolute derivative with respect to the same tensor gAll. 
By a simple direct calculation we can prove that the 
following theorem is valid: 

Theorem I: A scleronomic, holonomic dynamical sys
tem, with nonconservative forces Q", which are func
tions of pOSition, velocities, and time, moves in such 
a way that the differential equations of motion (2) are 
identical with the geodesic lines 

r 
",:..'" 
_"'l_= •• '" +r'" .A·",-O ot - q ljlq q - , 

in the linear connected space Ln with connection 
coefficients 

(3) 
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r~l'= {A W /.L} + 2~ (- QA6~ + QI' 6~ -Q"'gAI')' (4) 

r 
where a: are the Kronecker deltas and 616t is the ab-
solute derivative with respect to the connection coeffi
cients r~. During the motion, the time t plays the role 
of an affine parameter. 

The connection coefficients can be written in the form 

where 

is their symmetric part with respect to the covariant 
indices, while the antisymmetric part, or the torsion 
tensor (Ref. 13, p. 126) of the space L n, is 

where the vectors SA are 

r 

(5) 

(6)· 

(7) 

(8) 

The covariant derivative (V) of the fundamental tensor 
qAl' with respect to the connection coefficients (4) is 
given by 

The expressions for the covariant derivative and for 

(9) 

the connection coefficients (4), together with Eqs. (5)
(8), determine the linear connected space Ln as a semi
metric and semisymmetric space (see Ref. 13, p. 126). 
In the metrical sense this space is of W eyl' s type. But 
the presence of the torsion tensor in the connection co
efficients makes this space Ln more complicated than 
Weyl's space. 

3. A FUNDAMENTAL QUADRILATERAL OF 
VARIATIONAL CALCULUS 

The motion of a scleronomic holonomic nonconserva
tive mechanical system can be considered as the motion 
of a representative point in the configuration space Ln' 
Let rand r* (Fig. 1) be two neighbouring paths. The r 
is a direct path of the mechanical system and r* is a 
varied path. Let MI and M2, be two points on the direct 
path r, which correspond to the instants of time t and 
t + dt. If r is the radius vector of the point MlJ we have 
that MIM2 = dr and the radius vector of the point M2 is 
r + dr. Further, let M{ and M~ be the points on the va
ried path corresponding to the instants t and t + dt, re
spectively. We will define the variation of the radius 
vector as the vector MIM{ = ar. We will assume that the 
vector M{M~ on the varied path r* is M{M2 ' = dr' + dar, 
where dr' is a vector obtained by parallel displacement 
of the vector dr from the point Ml to the point M{. The 
variation of the vector dr, i. e., the vector lidr, will be 
defined in such a way that M2Mf ~ 6r + Mr. Now from 
Fig. 1 it is obvious that the following vector equation 
is valid: 

6r +dr' +d6r=dr + 6r + lidr. (10) 
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Introducing a metric form in the space Ln by the 
equation 

(dS)2=2T(dt)2=gaJ1dq"d/, (11) 

where dS is the length of the vector dr(dS = I dr I), we 
can calculate the change of length, using (9), as 

r dS 
V(dS) = 2T Qv 6qV (12) 

when the vector dr is parallel displaced [~(dq") = 0] 
from the point MI to the point M{. Here tkJ.;and liq" are 
components of the vectors dr and 6r, and V is the co
variant differential with respect to the connection co
efficients r~. 

Now, we have the value of vector dr', 

r 
dr' = dr + (dr) 0 V(dS), 

where (dr)o = dr / dS is the unit vector of direction dr. 
Combining (12), (13) we obtain 

(13) 

dr'= (1 + 2~ Qy6QV) dr. (14) 

Substituting (14) into (10) and using the equation (see 
Ref. 14, p.29) 

d6r-lidr=::" (d6q" - 6dq"), (15) 

we have 

::a (d6qa - 6dq" + 2~ Qy6qY dq") = 0, 

and finally (see Ref. 14, p. 30) 

lidq" =d6q" + 2~dq"Qyliqy. 

(16) 

(17) 

This equation shows that in the linear connected space 
Ln with connection coefficients (4), the variation oper
ator Ii, and the operator of differentiating d do not com
mute. This fact was postulated in Ref. 10. In Ref. 11 
the noncommutation rule (17) was introduced in agree
ment with the central Lagrangian equation (see Ref. 14, 
p. 253), while, in the present paper, we have shown its 
geometrical background. The noncom mutation rule (17) 
is a consequence of the quadrilateral MI , M{, M~, Ma 
and its construction. Therefore, the quadrilateral may 
be called the fundamental quadrilateral of variational 

M; __ ---r .. 

__ --r 

FIG. 1 
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calculus. When we have an inertial motion (Q .. ;;; 0) of 
the mechanical system, then from (4) and (9) it is obvi
ous that the space Ln becomes Riemannian. Under the 
same circumstances Eq. (17) yields the commutation 
rule for the operators 0 and d. 

4. GEODESIC LINES IN THE SPACE Ln AS THE 
CURVES OF EXTREMAL LENGTH 

The extremal length of a curve joining two points At 
B in the space Ln is given by the extremal value of the 
functional 

S = 1t1 cp(l' q'~) dt to ' , (18) 

where [see (11)] 

S=cp(q\;/)o=..Jgrx8c/';l (ZT=S2), (19) 

and where the instants to and t1 corresponds to the 
points A and B. 

The first variation of (18) is 

OS ==[11 (2!l oq'" + o.cp Oq''''') dt (20) 
to oq'" oq'" , 

which by making use of (11), (17), and (19) and inte
gration by parts becomes 

oS == a.":. oq'" I t1 
3q to 

If oq'" =: 0 for to and ttt then the extremal value of the 
functional (18) is obtained for oS = O. This, together 
with the fact that the oqCf. are independent variations, 
yields 

acp d acp ocp;/ 
aqCf. - dt ail" +3?SZQ", =0. 

Substituting (19) into (22) gives 

(21) 

(22) 

6qw =q'" + { w } .).." _Q'" +8.", at A fJ. q q - sq , (23) 

and combining this result with (4) and (11) we have 
r _ 
1\:'W 
_VfJ_",,-w +rw .:\." _~.w ot q A"q q -. q • 

S 
(24) 

Selecting the variable parameter of the curve to be the 
arc of the curve, L e., t = S, we see that these equa
tions become Eqs. (3). Hence, we can formulate the 
following theorem: 

Theorem II: The curve giving the extremal length of 
a curve between two points in the space Ln is simul
taneously the CUrve on which the tangent vector at a 
point remains tangent if it is parallel displaced along 
the curve. 

Hence, by this theorem, one unifying definition of 
the geodesic lines which holds in the Riemannian spaces 
is extended to the linear connected spaces Ln with con
nection coefficients (4). 
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Remark I: In this section we used the expression 
"extremal value of the functional," without any analysis 
of the second variation. Therefore, an expreSSion 
«stationary value .•. " is much more appropriate. 

Remark II: The stationary value of the functional (18) 
is obtained by the noncommutation rule (17). The rule 
may be considered as a restriction imposed on the 
family of curves which may be extremals. Hence, the 
problem belongs to the class of classical variational 
problems involving a conditional extremum. 

Remark ill: Theorem II is proved in the linear con
nected space Ln with connection coefficients (4). This 
implies that to every linear connected space which is 
different of the L" there corresponds an equivalent non
commutation rule of the form (17). 

5. A VARIATIONAL PRINCIPLE OF MAUPERTIUS' 
TYPE 

Let us consider the stationary value of the functional 

1:;: (tl T(q'" q' Cf.) dt 
Jto ' , (25) 

where T is the kinetic energy (1), subject to the non
commutation rule (17). After a simple calculation we 
obtain 

(26) 

Now, the stationarity condition 0[=0, for oq'" 1!1:;:0 
and independent variations oq"', furnishes the weU
known equations of motion of a mechanical system with 
generalized forces Q",. 

This variational problem yields the fUnctional (25) 
which is similar to the functional of the classical 
Maupertius variational principle. But the difference is 
obvious. Maupertius, principle requires time to be va
ried, while here this is not the case. Furthermore, 
Maupertius' principle is valid only for mechanical sys
tems with constant energy. An essential similarity is 
important. The classical Maupertius principle in 
Jacobi's form (see Ref. 14, p. 713) gives the equations 
of motion as the geodesic lines in a Riemannian space 
with metric tensor g",v = (h - II)g"'VJ where n is the po
tential energy and h is the constant total energy of the 
mechanical system. This idea is maintained here. The 
equations of motion which follow from the above varia
tional prinCiple are equivalent to Eqs. (2), i. e., to the 
equations of the geodesic lines (3) in the linear connect
ed space Ln. 

6. A VARIATIONAL PRINCIPLE OF HAMILTON'S 
TYPElo,JI 

The corresponding functional is 

[= (fl(T_ mdt, Jto (27) 

where the kinetic energy T has the form (1). If we gen
eralize the noncommutation rule (17) to 

o dq'" == doq'" + ~~ Qt oqV, (28) 
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where Q: are the generalized nonconservative forces, 
then, using the same technique as in the previous sec
tion, from (27) we obtain the corresponding differential 
equations of motion 

!!...E_E _i!E.,+Q* 
dt oq~ oq~ - oq" "'. (29) 

This variational principle of Hamilton's type can be 
easily generalized to rheonomic holonomic mechanical 
systems. The corresponding functional-action integral 
is again (27), but with the kinetic energy 

T= To(t, q"'} + Tl + Tal 

where 

Tl = g~(t, q~ )il, T z = ig,,1J. (t, l")q~;/ , 
while the analog of (17) and (28) is 

6dq~=d6q~+ dq'" Q*6q" 
2Tz + Tl" . 
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An N-body system with interparticle forces that are attractive at short range collapses in the limit N-.oo. 
namely in this limit the ground-state energy per particle diverges to negative infinity. If instead the forces 
are sufficiently repulsive at short range, in the limit N-< 00 saturation occurs, leading to a finite ground
state energy per particle E. This quantity depends, among other things, on the "coupling constant" g 
(entering as a factor that multiplies the interaction), and the above remark clearly implies that it is defined 
in the N--< 00 limit only for positive values of g (although, for finite N, it is defined both for positive and 
negative g). This fact is generally taken to imply that the function e(g) is nonanalytic in gat g = 0 and, 
therefore, that the perturbative expansion of E(g), being a power expansion in g, is necessarily 
nonconvergent (although it might be asymptotic). The purpose of this paper is to demonstrate the lack of 
cogency of this argument. It is therefore concluded that nonconvergence of the perturbative expansion for 
E(g) is thus far an unproven hypothesis. The lack of cogency of analogous current arguments concerning 
the equilibrium density of many-body systems is also pointed out. 

Let us consider the N-body system characterized by 
the Hamiltonian 

(macroscopic) system occupies only part of the (macro
scopic) container. Moreover, under such conditions, 

N N 
H == (2m)-l"6 p~ + g "6 v(rlj)' 

i=O ~>j=l 

(1) 

where of course PI == - iiiV I and rjj == 1 rj-r j I. Let 
E(N;,p~ g) be the ground state energy of this system when 
confined within a container of volume V == N/ p, namely 
the lowest eigenvalue of the equations 

HX (rl , r 2 , ••• ,tN ) == E(N; P. g)x (rl> t 2 , ... , t N ), (2) 

X(tu t 2 ... ,rN )==0 if r 1 or r 2 or .. ·rN on (3) 

surface S of volume V. 

Under these conditions the quantity 

p ==N/V 

represents the mean particle density of the system in 
the container; this quantity coincides with the actual 
density of the system only if this fills uniformly the 
whole container. 

(4) 

If the potential v(r) is integrable at infinity and is 
sufficiently repulsive (positive) at short range, as we 
assume hereafter, for g> 0 the system exhibits satura
tion/ namely the ("thermodynamic," 1. e., macroscopic) 
limit 

E(p, g) = lim [E(N; p, g)/ N], g> 0, (5) 
N_oo 

exists and is finite. This limiting value represents the 
energy per particle in a macroscopic sample; it is cer
tainly negative if the system is self-bound (as we assume 
hereafter2) and if its equilibrium (average) density p(g) 

the energy per particle is clearly independent of p. If 
instead p > p(g), the system is compressed within the 
container, and therefore E(p, g) does depend on p, being 
presumably an increasing function of p. Thus, as a 
function of p, E(p, g) has the behavior indicated in Fig. 
1. 3 The quantity ?(g) (see Fig. 1) is then the energy per 
particle in a self-bound system of macroscopic size, and 
p(g) (see Fig. 1) is the corresponding density (or aver
age density, if the equilibrium configuration is not 
homogeneous, as is for instance the case for crystals). 
A baSic task of many -body theory is the evaluation of 
.(g) and p(g). 

In principle the quantities .(g) and p(g) could be defined 
without any reference to a container; one should take the 

) 
i/ 

qUI 1--------"---

exceeds the mean density in the container p, so that the FIG. 1. 
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N- 00 limit in the problem characterized by the N-body 
Schrodinger equation (2), with no boundary conditions 
besides the asymptotic restrictions implied by the re
quirement that the many-body wavefunction X be nor
malizable (in the center-of -mass frame). This is of 
course equivalent to the treatment outlined above, but 
with p = O. There are, however, two reasons why the 
consideration of a container is useful, even though the 
corresponding problem is somewhat more complex, as 
indicated by the dependence of E( p, g) upon p, that is 
clearly not analytic at p =p(g) (see Fig. 1). 

The first reason is connected with the use of a per
turbative approach; the presence of a container avoids 
the technical complication that would otherwise be 
associated with the continuous spectrum of the kinetic 
energy part of the Hamiltonian. Indeed, for regular 
potentials/ E(N; p, g) is then an analytic function of g 
at g= 0, so that the power expansion 

~ 

E(N; p, g) = "6En(N; p)g" (6) 
":::0 

has a nonvanishing radius of convergence (for N and V 
finite). Thus, for suffiCiently weak forces, perturbation 
theory is then convergent-although the radius of con
vergence might tend to zero as N tends to infinity (see 
below). 

A second, and related, reason, has to do with the 
nonexistence, in the absence of a container, of any nor
malizable eigenstate of H for very small values of g; 
while to discuss the analyticity in g at g= 0 it is, of 
course, just on such values of g that attention is 
focused o 5 

For g< 0, the interaction gv(r) becomes attractive at 
short range, and as a consequence the system, in the 
thermodynamic limit, collapses, 6 namely 

[E(N; p, g)/ N] - - 00, g< 0 0 (7) 

This fact is generally taken to imply that the function 
E( p, g) of Eq. (5) is not analytic in gat g= 0, and there
fore that any perturbative approach to the computation 
of E( p, g) [and, a fortiori, E(g) and p(g)] involves the 
handling of non convergent (although possibly asymptotic) 
expansions. The purpose of this communication is to 
point out that such conclusion lacks altogether cogency 0 

We also note that, in spite of the nonanalytic p depen
dence of E(p, g) displayed in Fig. 1, the functions E(g) 
and p(g), namely the quantities of physical interest, 
might well be analytic (and even entire), and so might be 
the function E(p, g) defined to coincide with E(p, g), 
Eq. (5), for g> 0 and p > p(g), and by analytic continua
tion for other values of g and p; of course, the values of 
E(p, g) when g and p do not satisfy the above inequalities 
would then have no direct physical interpretation. 

The Simplest way to prove our point is to display a 
counterexample, namely to produce an explicit function 
E(N; p, g) (artificially concocted), that does have the 
properties (5) [with E(p, g) having the behavior shown in 
Fig. 1], (6), and (7), and yet yields function 1: (p, g), 
t(g) and p(g) that are analytic (indeed entire). Having in 
mind a detailed recent analysis, in the framework of the 
many-fermion problem, of this question/ in which the 
conclusion that we consider unwarranted plays a crucial 
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role, we require moreover that the function E(N; p, g) 
have all the additional properties, that have been shown 
to hold in this case. This allows us to conclude, also in 
the context of the physically most interesting case, that 
nonconvergence of the perturbative expansion for the 
energy per particle, and the denSity, of the ground state 
of an N-body system in the N- 00 limit, is thus far an 
unproven conjecture. 

These additional properties are, in the first place, 
the finiteness, in the N- 00 limit, of the coefficients 
En(N, p) of Eq. (6) divided by N: 

lim [En(N, p)/N]=[n(P). (8) 
N-~ 

This property is a precondition for raiSing the issue of 
the convergence of the expansion 

t [n(P)g" = [(p, g). (9) 

n = 0 

As we shall presently show, it may happen that this 
series converges; and the function [(p, g) it defines may 
(but need not) coincide with the function E (p, g) defined 
above. 

The second additional property of the coefficients 
En(N, p) is validity of the bound8 

IEn(N, p)1 < rNnI(A)n (10) 

with r and A independent of N. 

Consider now the example 

E(N; p, g)=-(I+z)N,t{t-(p-g)2/ 

(1 + exp[ - N + lf2(g- p) ])}+ zNg.(g. _ (p _ g)2/ 

{I + exp[ -N + N2(g - p)]})/[1 + exp(N - gN2)] 

-,tN2/[1 +exp(N+ gN2)]. (11) 

It is easily seen that it satisfies the inequality (10) and 
the condition (7), that it yields through (5) 

E(p, g)=,tp(p-2g) forp~p(g)=g, 

E(p, g)= _g4="f(g) for p ~p(g)=g, 

(12a) 

(12b) 

and that the coefficients [n(P) of Eq, (8) are finite and 
yield, through. Eq, (9), 

[(p, g)=(I+z),tp(p-2g), (13) 

Note that the function [(p, g) is entire and coincides, 
if z = 0, with the function E( p, g) for p ~ p(g) = g > 0 [so 
that [(p, g)="E(p, g)]. Indeed, we have constructed our 
example so that, in this case (z = 0), t(g) = - g4 and 
p(g) = g could be recovered from [( p, g) by applying the 
usual prescription, i. e., minimizing with respect to 
p. 

Although we have built into the expression (11) of 
E(N; p, g) some properties that are presumably also 
valid in realistic cases, it should be emphasized that 
the only purpose of this counterexample is to invalidate 
the claim that, using only the information discussed 
above, it is possible to prove that the energy per parti
cle of the N-body system in the N- 00 limit is nonanaly
tic in the coupling constant g. The question of plausi
bility-whether it is likely that in realistic cases one or 

F. Calogero and F. Palumbo 2104 



                                                                                                                                    

the other possibility prevail-is outside of the scope of 
the present paper. 9 It is, however, worth calling atten
tion to the mechanism whereby, in the example given 
here, singularities of the N-body system ground-state 
energy E(N; p, g) approach, as N increases, the origin 
of the complex g plane, and indeed accumulate there 
[and also on the positive real axiS, in the complex p 
plane, at the point corresponding to the actual density 
p(g) of the macroscopic system], but disappear in the 
N- 00 limit. 10 In the example displayed these singulari
ties are of polar type10 ; it is clear that analogous exam
ples with branch points instead of poles could be invented 
just as easily. 
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lFor conditions on the potential function v (r) that are sufficient 
to guarantee saturation, see: D. Ruelle, Statistical Mechan
ics-Rigorous Results (Benjamin, New York, 1969); F. 
Calogero, Yu.A. Simonov, and E. L. Surkov, Phys. Rev. 5, 
1493 (1972). Conditions that are necessary for saturation are 
also given in Ruelle's book; see also the review paper by F. 
Calogero and Yu.A. Simonov in The Nuclear Many-Body 
Problem (F. Calogero and C. Ciofi degli Atti, eds.) (Editrice 
Compositori, Bologna, 1974), Vol. I, p. 51; and the litera
ture quoted there. 

2We are therefore assuming the potential vCr) to be repulsive 
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at short range but attractive at longer range, as it is actually 
the case in most problems of physical interest. 

3There might be breaks in the rising part of the curve, con
nected with phase transitions between different spatial ar
rangements; but these phenomena are outside of the scope of 
our discussion. 

'The standard definition of a regular potential vCr) requires 
that it be finite-valued for r> 0, less Singular than r"'2 at the 
origin (li~_or2-'v(r) = 0, E> 0) and asymptotically integrable 
(li~_ .. r3+·v(r) '" 0, E> 0). Hereafter we limit our considera
tion to such potentials. 

5In principle, of course, this is no limitation, since in any 
case we are primarily interested in the function E"(g) for 
gR; go, where go is the physical value of the coupling constant; 
and eventually in the analytic continuation of this function to 
other values of g, including gR; 0, even if for such values of 
g it looses any physical meaning. 

6Note that this occurs, in three-dimensional space, even if 
the particles are identical fermions; see Ref. 1. 

7G.A. Baker, Jr., Rev. Mod. Phys. 43, 479 (1971). 
8Actually, the result that is proved in Ref. 7 is considerably 
less stringent, corresponding to Eq. (10) but with (2n)! in 
place of nl [see Eq. (3.38), and the sentence following it, in 
Ref. 71. The conjecture that the strongest condition (10) hold 
is, however, made plausible [see Eq. (3.45), and the discus
sion leading to it and following it, in Ref. 71. 

9Let us, however, mention that an example that is less artifi
cial, being related to a (one-dimensional) mathematical model 
that displays some of the typical features of an N-body sys
tem, does reproduce the basic properties of the example 
given here: F. Calogero and A. Degasperis. J. Math. Phys. 
(to be published). 

l~he function E(N; p,g) of Eq. (11) is clearly meromorphic in 
p and g; its poles in the g plane occur at g = ± gn and at 
g=p+gn' and those in the p plane occur at p=g-gn' with 
gn=N-1 +i1l"(2n+l)N~, n=O, ± I, ± 2,· • '. 
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A possible unification of gravitation and electrodynamics both 
for spinless and spinning media 

M. N. Mahanta 

Department of Mathematics, Indian Institute of Technology, New Delhi-llOO29, India 
(Received 29 August 1974) 

It was shown by the author recently that the Einstein-Mayer formalism of 1931-32 can be 
successfully applied to derive the field equations for a spinning medium. The present article discusses 
the possibility of obtaining a unified representation of gravitation as well as electromagnetism both 
for spinless and spinning media with the help of the same formalism. Field equations and equations 
of motion for a point particle are derived for both cases. 

1. INTRODUCTION 

In 1931 Einstein and Mayer1 published a unified theory 
of gravitation and electromagnetism based on a five
dimensional formalism. This theory yields the Einstein
Maxwell field equations correctly but only for the vacu
um case.. In a subsequent paper! in 1932 the authors 
sought to remedy this shortcoming by further generaliz
ing the mathematical formalism. But as it has been re
cently shown by the author of this article, 3,' the latter 
generalization correctly represents the intrinsic an
gular momentum of a spinning medium and has nothing 
to do with corpuscles as proposed by Einstein and 
Mayer. In this paper we shall first try to show that we 
have only to introduce a slight modification in Ref. 1 
in order to get the desired representation of a nonzero 
current density vector and so derive the Einstein
Maxwell system of field equations for the nonempty case 
from a single formalism. The equations of motion for 
a charged particle are derived and they are essentially 
the Lorentz equations. 

In the second part we introduce the spin of the medium 
as in Refs. 3, 4 and derive the combined system of field 
equations in the presence of gravitation, electrodyna
mics and spin and these equations in turn are used to 
derive the equations of motion of a charged spinning 
particle, which bear formal resemblance to the same 
equations in already existing literature. 5-9 

2. CASE OF A SPINlESS CHARGED MEDIUM 

A. Mathematical formalism 

The mathematical formalism is the same as in Ref. 
4, except that we now assume as in Ref. 1, that 

where F k4 is defined this way. We assume F"" to be 
skew-symmetric. From this and the relation 

Acr'lcr = 0, 

it follows that 

Aa;. = - 'lcrFkq • 

(2.1) 

(2.2) 

(2.3) 

(2.5) 

Following the same procedure as in Ref. 4 we get 
the following expression for p.p>..", viz., 

from which 

p=yapPap =R - FkpFkP. 

We now form the tensor 

Uap=Pap - tYap(P + R) 

(2.6) 

(2.7) 

(2.8) 

= AaFpk ;k + y~[(R,.p- ~grpR) - (FkrF k p - tgrpFklFk/) J. 
(2.9) 

It is then shown that 

CPa;p - ~y ';,NrkpFkP = 0 

where 

Thus 

B. Field equations 

(2.10) 

(2.11) 

(2.12) 

We propose the following set of equations as field 
equations for the combined Einstein-Maxwell field, 
viz. , 

u ap =KT ap , 

NrkP = Frk,P + FkP,r + F pr ,k = O. 

(2.13) 

(2.14) 

Tap is the "mixed" energy-momentum tensor and K is 
a universal constant. For a charged dust 

(2.15) 

JJ. being the mass density, u! the four-dimensional velo
city vector with ua as the corresponding 5-vector, i. e., 

It is also easily verified that 

glk;. = (Ya/~);. = 0, 

ua = yguk + (u.,.A~)Aa. 

(2.4) Writing (2.13) fully we get 

(2.16) 
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A"FP"l" +Y'''l(J¢-%~R) - (F ..... F"I> - t~,.F.,F"')] 

==KP.Y:uV + Kp.AA."t/ 

writing 

(2.17) 

A ==A.u". (2.18) 

Multiplying (2.17), respectively, by Yatt and A". we get 

(]lI1> _ %g"I>R) - (F,,"F"I>_ tg"I>F", Fit') = Kp.ul>u". 

FI>" ;It = (KAp.)ul>. 

If now we put 

Fi" ==.fK 4>,,, 

(2.19) 

(2.20) 

(2.21) 

where 4> ilt is the tensor of the electromagnetic field 
(K is positive from the Einstein theory with our defini
tion of ]liP), then we have the following system of 
Einstein- Maxwell equations: 

.R"P - %g"PR ==K{p.u"t/ + (4),,,,4>ltP - tg""cf>", 4>"') ], 

cf>P~1t == puP, 

where p=...fKAp. is defined as the charge density: 

cf>r",p + cf>"p,r + 4>/Ir," = O. 

(2.22) 

(2.23) 

(2.24) 

C. The Lorentz equations of motion for a charged test 
particle 

The Lorentz equations for a charged particle can be 
obtained by taking the divergence of (2.22) and using 
(2.23) and putting pi p. = elm, e and. m being the charge 
and mass of the particle, respectively. We may derive 
the same equation directly from (2. 13) since 

(T "P) - 1 U"P -0 lP-K lP=' 

1. e., 

i. e., 
(2.25) 

(P.UP)IPU" + P.t/U"ll> = 0, (2.26) 

which yields (p.t/) lP == 0 if u"u" = const. Thus from (2.26) 
we get 

u~pt/ =0, 
i. e., 

Du" 
i)T== O. (2.27) 

From u" = y!u", we thus get 

Du" " t1 r 
'.D T == Y u;ru u 

i. e., 

du" +{ k } u!'u" ==A UU F" ur 
dT pq u r 

==A..fK¢"rur 

=.!!..,I," ur 
p. 'I' r (2.28) 

which is the covariant form of Lorentz equations re
placing pip. by elm. 
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We may easily prove that A =A.,u" is conserved along 
the world line of the charge, since 

3. CASE OF A CHARGED SPINNING MEDIUM 

A. Mathematical formalism 

To take account of the internal angular momentum 
(spin) of the medium we further generalize (2. 1) by 
taking 

y:;" = AUF"" +yury".". 

It is then easily obtained that 

A~1l ==- y""F"". 

For 

g,,,;,, =. (y",y~);" == 0 

we must have 

and then 

g;; =. (N AU + y:yU\" == o. 

(3.1) 

(3.2) 

(3.3) 

It is to be noted that the relation A;" = 0 used in Ref. 4 
follows from (3.2) if F"" = O. 

We are led to the following expression for P"p,,", viz., 

p.P,," == YarA"(F
r
pl" - F r

qlP + V T ".F"I> - V\7".) 

Then 

+ y"'''A,,(F''.IP - F"I>;" + Frl> VT"" - Fr. Yr"p) 

+ YarY"''' (R"p/ - F".FTp + FT"F"p + V rsp V.~q 

_ V r." V Sltp + Vr""IP - V\p;q)' 

P"p =. Y~P"pu'" =A,,(- F"p;" + FT p V/" _ Fr"V"'I» 

+ Y"r(R~- F ..... F"p + V r•p Y."" _ yr." V 81IP 

+ Vr".;P _ Vr"p;,,), 

P =. yUPP"1> = [R _ F"I> F"p + y/lrp Vr"" _ Vps"V. kP 

+ VPIl,,;1> _ yl>llp;,,], 

UUI> ='P"I>- tyup(P + R) 

=A"[F,";,, + FTI> Vr"q _ FT" V r" p] 

+ y~[ (Rrp - %grpR) - (F ..... F" P - igrpF",FU) 

+ (VrSjl V so" - Vr liz V 8111> + V/,,;p - V/ p;,,) 

1. (V'r V" V' 81I V +V,,, V'.)] - 4grl> 'r " - 811' "p - ';11' 

B. Field equations 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

We shall consider an incoherent charged distribution 
of spinning matter and restrict ourselves to the case 
when the electric dipole moment density is zero and the 
magnetic dipole moment density mfi is parallel to the 
spin density sli, i. e. , 

(3.8) 

M.N. Mahanta 2107 



                                                                                                                                    

and 

(3.9) 

The "mixed" energy-momentum tensor will have the 
form 

T"P =u"gP + m"k¢/ (3.10) 

where gP is the momentum density. 

The additional term on the rhs is the interaction en
ergy between the dipole moment density and the elec
tromagnetic field represented by the skew-symmetric 
tensor ¢/J>' Thus our field equations are 

U"P =KT"P =K[u"gP - m"k¢P k]' 

Writing 

u" = y:u
q + (AAUA)A" 

and 

m"k= y;mqk + {AXmAk)A" 

(3. 11) 

in (3. 11) and substituting for U"P and multiplying both 
sides by A" and y~, respectively, we get 

FfZ- FrkVrkP=K[(A"u")gP - (AxmXk)¢Pk], (3.12) 

(RPo_tgPoR)_ VOSkVs/_ va~PI +tgPavlSkvSkl 

=K{gPu< - tpPkmqk) + (FHF\_ tgMFkIFk/). (3.13) 

In deriving (3. 12) and (3. 13) we have already assumed 
the following relations: 

and 

Vlii=VIl/=O sincesiiuj=O. 

If we now set 

F/k=!Ktpik, 

then (3.12) reduces to 

tpf: = !K(A"u ")gP + tprk V rkp - (Axm Ak)F P k' 

Now 

(AxmXk)FPk = mXk(yf;k - yr V/ k) 

( Xk P) P( Ak) Ak rV P = m 'YA ;k-YX m a- m 'Yx r k 

= m Pk _ yP(m Ak) + m V PTk 
; I;! ), ;k Til 

(3.14) 

(3.15) 

Considering, as in Ref. 4, the middle term as the co
variant divergence of m Pk w. r. t a new connection r 
and using Eq. (3.12) of Ref. 4, we get the rhs as zero. 
Thus we get 

(3.16) 
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with l = !K{Aau ")gP + ¢rk V rill> as a generalized current 
density vector. Equation (3.16) is the analog of Max
well's equations in our case. If we put Sii = 0, then we 
get back the familiar form of Maxwell's equations. 

Equation (3.13) now reads 

(RPo _ tgpqR) - VqSkVs/ + VIO~1 +igPoVISkVSkl 

=K[{gPu• _ ¢Pkmqk) + (tpPk¢\ _ igPqtpkltpk/)], (3.17) 

which are analogs of Einstein's field equations. Taking 
the skew-symmetric part of (3.17), we get 

(V lap _ VIPO);1 =K[gJ>u. _ gaup _ (tp\mOk _ ¢\m Pk)], 

i. e., 

C. Equations of motion of a charged spinning point 
particle 

(3.18) 

Using the familiar procedure of integrating over the 
small volume Vo of the particle, we get from Eq. (3.18) 
first, 

(3.19) 

where the capital letters are the integrated small let
ters over Vo and the dot is differentiation w. r. t proper 
time. To get the other set of equations, we first take 
the divergence of Eq. (3. 17) ignoring the terms qua
dratic in spin and then integrate over Vo. We shall then 
get 

C· J> 1 ISarR J> +,f.,P Jk ,f.,P Mko ,f.,P MkO = - 2 U ZqT 't' It - '+' k;q - 'Y k ;q 0 

(3,20) 

The only essentially new te."m on the rhs is the last 
term. 
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Solutions of a scalar-tensor theory from Einstein's theory 
T. Singh 
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(Received 30 December 1974) 

The vacuum field equations of a scalar-tensor theory proposed by Sen and Dunn are investigated. 
The metric coefficients are assumed to be functions of three variables only. It is then shown that if 
one assumes a functional relationship between some one of the metric coefficients and the scalar 
function, one can find a solution of the vacuum field equations of Sen and Dunn's scalar-tensor 
theory in terms of a solution of the vacuum field equations of Einstein's theory. This result is 
applied to some well-known solutions, viz., Schwarzschild solution, the static plane symmetric 
solution of Taub. the conformastat solution of Das, and the static axially symmetric solutions of 
Levi-Civita and Curzon; and the corresponding solutions of the scalar-tensor theory are obtained. 

,_ INTRODUCTION 

Recently Sen and Dunnl have proposed a new scalar
tensor theory of gravitation in which both the scalar 
and the tensor fields have intrinsic geometrical signi
ficance. The scalar field in this theory is characterized 
by the function <I> = <I> (Xl) where Xi are coordinates in the 
four-dimensional Lyra manifold and the tensor field is 
identified with the metric tensor gil of the manifold. 
The field equations given by Sen and Dunn for the com
bined scalar tensor fields are 

Rij - tgljR = w<I>-2(<I>, i<I>.J - igiJ<I>.k<I>·k) - 81TG<I>-2T jj , 

(1. 1) 

where w = 3/2, Til is the energy-momentum tensor of 
the field, and Ril and R are, respectively, the usual 
Ricci tensor and Riemann curvature scalar. [It may be 
noted that the field equations (1. 1) do not follow from 
the original variational prinCiple of Sen and Dunn. They 
can either be derived from a suitable action integral or 
assumed a priori. ] In the matter-free region these field 
equations reduce to 

Rlj - tg1jR =w<I>-2(<I>. i<I>.J - tgij<I>.k<I>·k), 

where w = 3/2. 

(1. 2) 

In this paper we have investigated the vacuum field 
equations (1. 2) of this scalar- tensor theory and dis
cussed a procedure which will enable one to construct 
exact solutions of the scalar-tensor theory from given 
vacuum solutions of Einstein's theory. We assume that 
the tensor field gij and the scalar field <I> are functions 
of Xl, 'x2

, x 3 only. It is then shown that if one assumes 
a functional relationship between goo and the scalar field 
<I> , one can find a solution of the scalar-tensor theory 
in terms of a solution of Einstein's vacuum field 
equations. 

In Sec. 2 we first set up the field equations of the 
scalar-tensor theory in a suitable form by assuming 
a functional relationship between g00 and the scalar field 
<1>. Then we prove the desired result. In Sec. 3 we 
illustrate the application of the result for some well
known vacuum solutions of Einstein's theory, viz., 
Schwarzschild's exterior solution both in standard and 
in isotropic coordinates, conformastat solution of 
Das,2 the static plane symmetric solution of Taub, 3 and 
the static axially symmetric solutions of Levi-Civita4 
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and Curzon. 5 The last section contains some concluding 
remarks. 

2. DERIVATION OF THE SCALAR TENSOR 
FIELDS FROM EINSTEIN VACUUM FIELD 

We work with the vacuum field equations (1. 2) of Sen 
and Dunn's scalar-tensor theoryl which can be written 
in the form 

(2.1) 

where w = 3/2. This can be transformed into the equation 

R1j=w(h.jh. j ), 

where we have put 

(2.2) 

<I> =eh• (2.3) 

Further, we choose the matric in the form 

ds2 =e 2U(dxO)2 + e-2U(YOIBdxOl dxB). (2.4) 

This metric is the most general static line element and 
admits a hyper surface orthogonal Killing vector ~i = 5~. 
The three-dimenSional metric satisfies the following 

Y OIBy
OIG 

= 58' (2. 5) 

The components of the RiCCi tensor for the metric (2.4) 
are given by 

Roo=e4U~2(U), (2.6) 

R oOl = 0, (2.7) 

R OIB =POIB +2U.",U,s- Y0l8t.2(U), (2.8) 

where we have introduced the differential parameters 
of the first and second orderS defined as 

~l (U)= y'>.8U, OI U• S, 

~l(U, V) =y"sU. ",V,s, 

~2(U)=y"SU;"'8=y"S(U."'B- Pe u. a). 

(2.9) 

(2.10) 

(2.11) 

2:~B and P "'S are respectively the Christoffel symbols 
and Ricci tensor defined with respect to the 3-space 
metric y",s' The scalar field <I> and consequently h also 
will be taken as a function of xl, x 2, x 3 only. 

Now the field equations (1. 2) for the metric (2.4) can 
easily be set up and one obtains 

(2.12) 
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(2.13) 

We now assume that U and h are functionally related 
and the relation is of the form 

U=bh, (2.14) 

where b is a constant. 

If we assume (2.14) then the Eqs. (2.12) and (2.13) 
yield 

and 

Po<8+ 2k2h, ",h,8= 0, 

where k2 = b2 - w/2. Now if we write 

j=kh, 

then Eqs. (2.15) and (2.16) reduce to 

P ",8 + 2f. ",f. 8 = 0, 

A2 (f) = y"'Bj; ",8 = O. 

(2. IS) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Equations (2.18) and (2.19) are nothing but the static 
gravitational field equations R jj = 0 of Einstein's theory 
in empty space; where the line element has been taken 
to be 

ds2 =e2f (dxo)2 +e-2f(Yo<8dx"'dxB). (2.20) 

Thus we have established the following result: 

For every solution j and Y"'B of the empty space 
field equations of Einstein's theory, we can con
struct a corresponding solution of the vacuum field 
equations of Sen and Dunn's scalar-tensor theory 
with the same Y",8, q, being given by (2.3) and (2.17) 
and U being given by (2. 14) and (2. 17). 

In the derivation of the above result we have assumed 
that all the functions are independent of the coordinate 
xO. However, the result is quite general and holds good 
with appropriate modifications when the absent co
ordinate may be any of the four variables xO, xl, x2, x 3• 

3. APPLICATIONS OF THE TECHNIQUE 

Now applying the technique developed in the previous 
section, we shall obtain the solutions of the vacuum 
field equations of Sen and Dunn's scalar-tensor theory 
from the known solutions of vacuum field equations 
Rij = 0 of Einstein's theory of gravitation. 

A. Schwarzschild's solution in standard coordinates 

This is given by the line element 

ds2 "exp[log(l - 2m/r)] dt 

- exp[-log(l- 2m/r)][dr2 +r2(1_ 2m/r) 

x (d82 + sin28 dcp2)]. (3.1) 

The corresponding solution of the scalar-tensor theory 
is 
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B. Schwarzschild's solution in isotropic coordinates 

This is given by the metric 

ds2 =(1 -m/r) 2 dt2 _(1 -m/r)-2 
1 +m/r 1 +m/r 

x (1- ~22y (dr2 +r2 d82 +r2 sin28dcp2) 

(3.2) 

(3.3) 

(3.4) 

The corresponding solution of the scalar-tensor theory 
is 

(3.5) 

with the scalar function 

q, = (1 _ mr) I /.rb2
_w /2. 

l+mr (3.6) 

If we write m "B, b = - lie and ";b 2 - w/2 = - Ale, 
then (3.5) and (3.6) transform, respectively, to 

( 1_B/r)2/~ [( B)I-I/~( B)I+I/~J 
ds2 

= / dt2 - 1 - - 1 + -1 +B r r r 

x (dr2 +r2 d82 +r2 sin28dcp2) (3.7) 

and 

q,,,(l-B/r)-C/~ 
1 +B/r ' 

(3.8) 

where B, C, and A are constants. This solution is a 
particular case of the spherically symmetric solution 
in isotropic coordinates obtained by Halford7 when we 
choose Po =qo = 0, x~ = 1 [see Eqs. (2. 42a), (2. 42b), 
(2. 42c), and (2.43) of Ref. 7]. 

C. A conformastat solution 

Das2 has obtained a conformastat solution 

ds2 " (1 - mxt2 dt2 - (1 - mx)4(dx2 + dy2 + dz2), 

where m = const. This metric is due to an infinite plate 
parallel to the (y, z)-plane. The corresponding solution 
of the scalar-tensor theory is 

ds2 = (1 _ mxt2b /.rb2-w /2 dt2 

_ (1- mx)2+(2b/.rb2-w / 2)(dx2 +dy2 +dz2) 

with the scalar function 

q, = (1- mxt1/.rb2-W/2. 

T. Singh 

(3.10) 

(3.11) 
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D. A static plane symmetric solution 

The static plane symmetric solution of Taub3 is 

ds2 '" (k1x +k2)"1/2(df- - dx2) - (k1x +k2)(di +dz2), 

(3.12) 

where kl and k2 are constants. This is due to the gravi
tational field of an infinite plane parallel to the (y, z)
plane. The solution of the scalar-tensor theory is 
given by the metric 

ds2 '" (k1x + k 2)"b/2"'b2
.W /2 dt2 _ (klx + k2)b/2"'b2•w /2 

X [(klX + k2)"1 dx2 + (klX + k2)1 /2 (dy2 + dz 2)] (3. 13) 

together with the scalar function 

(3.14) 

E. Levi·Civita solution 

The static axially symmetric solution of Levi-Civita4 

is given by the metric 

ds2 "'(~t2+2q)/2 (dt2_ dr2)_(~) qr2d1>2 -(~t dz2, 

(3. 15) 

where ro and q are constants. This is due to the gravita
tional field of a line mass placed along the z axis, 

The use of the transformation z - it, t - iz brings the 
metric to the standard form and then applying the result 
of the previous section the corresponding solution of 
the scalar-tensor theory is 

( 
r)q2 /2+(bq /2"'b2.", /2) ( r)bq /"'~.w /2 

ds2 '" - (dt2 _ d~) - - r2 d1>2 
ro ro 

(3.16) 

(3,17) 

F. "Curzon" particle solution 

The static axially symmetric solution representing a 
"Curzon" particle is given by the metric 

ds
2 

'" exp ( _ 2;) dt
2 

- expC;) 

(3.18) 
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where m = const and p = (r2 + z2)1 /2. The corresponding 
solution of the scalar-tensor theory is given by the 
metric 

ds2 = exp(- 2mb/p';b2 - w/2) df

- exp(2mb/p';b2 - w/2) 

x [exp _(;;~2) (dr2 +dz2) +d1>j (3.19) 

together with the scalar function 

q, '" exp(- mp/';b2 - w/2). (3.20) 

4. CONCLUSION 

The immediate use of the result obtained in Sec. 2 of 
this paper is in obtaining the solutions of Sen and 
Dunn's scalar tensor theory from the known empty 
spaces of Einstein's theory. But aside from the gen
eration of solutions, one may also use the result ob
tained here in discussing the singularities of the two 
theories. One may easily observe that, Y"/l being the 
same in both the cases, the solutions in the two the
ories will have the same Singularities, if any, present 
in Ya/l' 

In conclusion, we hope that the results of the present 
paper will lead to a deeper understanding of the rela
tions between Einstein's theory of gravitation and the 
scalar-tensor theory of Sen and Dunn. We also hope 
that some physical insight can be gained from the solu
tions obtained in this paper. 
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It is shown that the set of finite linear combinations of the harmonic oscillator functions as well as 
the set of (Schwartz) functions of fast decrease form cores for a large class of operators on the space 
L ~(IR n). where fL is nice relative to Lebesgue measure. The results are applied to a variety of classes 
of classical potentials and their second-quantized analogs. 

I. INTRODUCTION 

In solving models of quantum field theory, one rapid
ly gets involved in tedious calculations in which the 
technical difficulties are partially alleviated if one can 
choose a nice core on which to calculate. 1 We present 
two such cores here, one consisting of finite linear 
combinations of the harmonic oscillator functions (well
known to most physicists) and the other consisting of 
the functions of fast decrease (well-known to most 
functional analysts). 

II. THEORY 

Definitions: (a) {1{!J(x)} denotes the set of harmonic 
oscillator (h. 0.) functions in one variable; {1{!,(X)}, 
the h. o. functions in several variables obtained as de
composable tensor products of the one-variable h. o. 
functions: 

1{!,(X) = 1{!Jl(X1)1{!J
2
(X2) o. °1{!J n(xr.), j = (j1>'" ,jn)' 

Do denotes the set of finite linear combinations of h. o. 
functions. 

(b) .s (lRn) denotes the set of functions of fast de
crease. 2 The h. o. functions are in .s (lR"). 3 

(c) JJ. is to be a measure on lR", which is (i) abSOlute
ly continuous with respect to Lebesgue measure, (ii) 
such that the h. o. functions are in L ~ (lR") , and (iii) 
such that for each compact subset S of lR", there exists 
a constant deS) such that 

l!fllL 2'" d(S)lttlIL 2 for all fE L 2(R"), suppft;;;; s. 
u 

(d) A closable linear operator A on L ~ (R") is said 
to have property P if there exist constants c, m such 
that 

holds for all h. o. functions zJ!j. The set of operators 
having property P is a linear set. In the case where 
JJ. = Lebesque measure, since the Fourier transform 
operator F sends h. o. functions to themselves and is 
unitary, A has property P iff FArl has property P. 

Theorem 1: Let A have property P, and let B denote 
any closed extension of A restricted to Do. Then the 
domain of B contains S (R"). 

The Proof follows immediately from the result3 

that any fE S(Rn ) may be written in the form 

f= Ia(j)<p" a(j)= J <Pj(x).t<X)d"~ 
j 
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and then L: J 1 a(j) 12 (1 + I j I)Q converges for all q. 

More definitions: (e) Let a be a complex-valued 
Lebesgue-measurable function on R" and define the 
closed set rea) = {x E RIt 1 a is essentially unbounded 
in all deleted neighborhoods of x}. 

(f) {Ez} denotes the spectral family on L 2(R) corre
sponding to the position operator. [By (d) above, this 
may be position in either configuration or momentum 
space.] 

Theorem 2: Let A be an operator on L; (Rn) which is 
multiplication by a (A = f a(x)dEx) with rea) of Lebesgue 
measure zero (and hence JJ. -measure zero) and such that 
the domain of A contains S(lR")' Then S(R") is a core 
forA. 

Proof: In fact we show that the functions of fast de
crease with compact support form a core for A. To 
this end we introduce the closed sets S(O) ={XE JRnl 
distance (x,r(a))",0, Ilxll",o-l}, for each 0>0. Then 
since r(a)=JR"\Uo>oS(o) is of JJ. measure zero, for 0 
sufficiently small S(O) is of nonzero /l-measure (and 
hence Lebesgue measure). a is essentially bounded 
on each S(o), and so we introduce Dl ={jE L; (m")! suppf 
c: S(o) for some 0 > o}. Dl is a stable dense set of analy
tic vectors for A and hence a core for A. 4 Now let B 
be any closed extension of A restricted to qJRn

). It 
suffices to show that Dl is in the domain of B. Let 
fE Dl be such that suppfe;; S(oo)' Since S(oo) is compact, 
there is an 1) E S (JR") with 0"'1)",1, 1) = 1 on suppf, 
1)=0 on the closure of m"\S(oo/2). Pick {<Pm}r;: qm") 
such that <Pm - fin L 2 norm. Then 1) <Pm -1)f=f in L 2 

norm and 

IIB1)<P1-B1)<Pmlll""'ess sup ia(x)id(S(oi2»II<P I - <Pmll. 
xE S(6 0 /2) 

Since B is closed, fE D(B). 

Corollary: If A = f a (x) dEx ' r (a) of Lebesgue mea
sure zero, and A has property P, Do is a core for A. 

III. APPLICATIONS 

If a is polynomially bounded (e. g., free Hamilton
ians), r(QI) is trivially of measure zero and property 
P follows from the recurrence relation for the h. o. 
functions. For a E L P (Rn) , 2"" p'" 00 (including many 
potentials such as the Yukawa potential), Holder's 
inequality and the fact that there is a Single constant5 

K such that 111{!11l~ <K for all h.o. functions establishes 
property P. The condition on r (a) is usually obvious 
in each case. 
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External potentials are described by 0' 's of the form 
0' (y) = f V(y - x) dp(x), p describing a fixed external 
source distribution with Radon-Nikodym derivative 
denoted p' and V(y - x) a two-body potential. Property 
P for several classes of these external potentials is 
established as follows: 

Lemma: Let V be such that there is some 13 
= ~1' ••• ,~"), fl j ~ 0 for which 1107.1 (1 + 1 x f 1 )-B f VII .. is 
finite and x'" E C(IR") for all «= (0'1"" ,a,,) such that 
o ~ C\' j ~ P j' Then 0' = V * P is polynomially bounded and 
hence has property P. 

Proof: In the convolution integral defining 0', multiply 
and divide by 0'L1 (1 + 1 x j - Y j 1 )B j and expand the numera
tor by the multinomial theorem and triangle inequality. 

Lemm a: Let VEL P (JRn) , 2 ~ P ~ 00, p a finite positive 
measure. Then 0' has property P. 

Proof: Integrating V * p against an L G function and in
terchanging the convolution shows V * PE L p(IRn) for 
l~p~oo. 

Lemma: VEL P(JRn), p> 1, p' E L o (JRn) , p-1 + q-1 = 1 
implies V * pEL" (JR") and hence has property P. (Use 
Holder's inequality). 

Lemma: If V is a Rollnik potential and (i is such that 
IxISp'(X)EL"(JR3)fors=O,1,2, then V*{iEL"(JR3

) 

and hence has property P. [For 1 V*p'12(Z), multiply 
and divide by 1 x - y 1 2, and use the triangle inequality 
in the numerator. ] 

We remark that the roles of V,p in the above may 
be interchanged whenever V is locally integrable. 
Furthermore, if D denotes derivative and V is locally 
integrable, the relation V*D'"p=D'"V* p may be useful 
in transfering singular behavior between V and p. 

For bona fide two-body potentials, A = f v(x - y) 
X1d(E,/8 E.,), x, YElRn, so that reV) is trivially of 
measure zero, being confined to a hyperplane. 

Lemma: For V polynomially bounded, or VE L 2 (lR") , 
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2 ~ P ~ 00, or V = Fourier transform of Rollnik n L 1 (JR3) , 
then the two-body potential A has property P. 

Proof: If V is such that there is a polynomial Q with 
y2Q-1 E L 1(R") (V viewed as a function on R"), then V 
has property P. [In IIAl/!jIl2 multiply and divide by 
Q(x - y) and expand the numerator with the multinomial 
expansion. Then use the recurrence relations for the 
h.o. functions to obtain constants d such that 
Ilx'l/!j (x)lI .. ~ c'(l +1 j 1 )1.1, J For V E e(JR") we may 
choose Q=l; for VEL "(lR"), choose Q-1E L 1(IR"); for 
V polynomially bounded, choose Q to be a polynomial 
of sufficiently higher degree and with no real zeros; 
for V= Fourier transform of ROllnik nL I(JRS), use 
Q(z)=z; and finally if VELP(IR"), 2<p<oo, choose 
Q-l E L P/P-2(lR"), and use f I VI 21 Q-11 ~II V2 IIp/ 2I1q1Ilp/P_2' 

Slight modifications of the above results may be used 
when measures J.L are introduced, as in the case of re
lativistic measures for various spin and space 
dimensions. 

The above results, shOwing that under very general 
circumstances Do is a core for A, may be coupled with 
a known result6 to conclude that the second-quantized 
form of A has a series expansion in terms of the free 
quantum fields in both the Fermi and Bose cases, there
by providing a generalization of a theorem of Hepp. 7 
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An exact spherically symmetric local solution in a class of 
"strong" and "weak" two-tensor gravity theories 
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After derming simultaneous spherical symmetry for two metrics, the technique of equation splitting is 
used to produce exact spherically symmetric solutions within the class of two-metric gravity theories 
introduced in an earlier paper. The nontrivial solutions are found to select the exceptional case, 
distinguished in previous work. The solutions in this case, however, possess a "gauge freedom" which 
apparently leaves the physics ambiguously defmed. Nevertheless, we use the gauge freedom to 
simplify and proceed to local solutions, where I g " is an empty closed space of positive constant 
curvature and 0g .. is a Schwarzschild solution with a mass. The empty closed space is found to be 
contained within the Schwarzschild radius. 

I. INTRODUCTION 

In an earlier paper1 Lubkin and the author have argued 
that the causal structure of space-time in the neighbor
hood of hadronic matter may be dominated by a massive 
spin-2 meson or rather by a fictitious meson which rep
resents the average effect of the known spin-2 octet. We 
introduce cosmological terms as mass terms. The argu
ment against such an identification in a single metric 
context does not hold2 in the presence of two dynamical 
metrics. In Ref. 1 we introduced a general class of 
Lagrangian theories of two minimally coupled, second 
rank symmetric tensor fields that is based on the idea 
that all matter other than hadronic should be universally 
coupled to the "gravitational" field; in particular, the 
gravitation field is coupled to itself. Also all hadronic 
matter is to be coupled universally to the heavy spin-2 
meson; and, again, in particular, the heavy meson is 
coupled to itself. The self-coupling is to be generated 
through the field energy, in the manner of Gupta. 3 The 
coupling between the two fields is prescribed by a gen
erally covariant field-current identity and a criterion 
of minimality: that there be no derivatives and that the 
interaction Lagrangian density be the Simplest possible 
function of the two tensor fields. 

We point out that others have also seen the desirability 
of such 2-tensor gravity theories. 4 Since the motivation 
is, by now, a part of the literature, we refer the reader 
to the references. Our Lagrangian given in the next sec
tion is an alternative to those suggested by Isham, 
Salam, and Strathdee, and by Aichelburg and Mansouri; 
in fact, our Lagrangian includes that of Aichelburg and 
Mansouri as a subcase; the evidence so far is that our 
Lagrangian is a real generalization of theirs. 

Although some effort has gone into investigating the 
nature of the solutions to above-mentioned 2-tensor 
theories,5 the results have been somewhat disappointing. 
Mansouri and Urbantke have shown, for instance, that 
the Kerr-Schild ansatz 

g".=1/". - F(x)N"N. 

where N" is null with respect to either 1/,. or g,., for 
both tensor fields will allow only pp-wave solutions: 
this, in spite of the well-known richness of the K-S 
ansatz in general relativity. 
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A solution notably missing from the 2-metric K-S 
family of solutions is a "bi-Schwarzschild" solution. 

Moreover, an exact spheric ally symmetric static 
solution to either of the other theories has not yet been 
found. For our Lagrangian, we give a special, but exact 
spherically symmetric solution to the 2-tensor field 
equations. Although this solution is in a subcase of the 
Lagrangian that we previouslyl·2 called the exceptional 
case, the solution may yet provide clues as to the be
havior of more general solutions. It can be remarked 
that the exceptional subcase has no intersection with the 
Aichelburg-Mansouri subcase. 

In Refs. 1, 2 we have introduced a generally covariant 
system of equations for two "metric" tensors 0g". and 
19". that are derived from the Lagrangian density (upper 
and lower dot pairs indicate contractions): 

1 1 L =OjTqfR - 2°A) +1k2 ..J- 1g(lR - 21A) 

+...!..oJj.r-?g 0(JO' +~lJj...r:::rpgDO' 1",.. (1.1) 
Dk2 •• "lk2 b •• " 

Ok, lk, DA, lA, DJj., lJj. are free parameters; we refer the 
reader to Refs. 1 and 2 or [6] for curvature conventions. 
By varying Dg ". and 19". independently, one obtains the 
field equations 

DC". + (DA _!O Jj.0go.lg.)Og". 

../_lg 
=k21" l",.Og 0g _O"lg 

t"" ~ l5 .IJ...... ,- JLV' 
v-og 

(1. 2a) 

(1. 2b) 

where 

(1.3) 

For details on constant solutions to (1.2), and other re
sults we refer the reader to Refs. 1, 2. 

Although the original intent of the Eqs. (1.2) was to 
model the mixing of massless and massive spin-2 fields, 
it has become clear that the values of the 5 parameters 
°A, lA, 0Jj., lJj., k, which were introduced for generality, 
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influence greatly the nature of the solutions of the field 
equations: The nonperturbative linearization scheme 
introduced in Ref. 2 indicates seven distinct behavioral 
possibilities which are characterized by mass and spin 
of whatever particles remain in the reduction with re
spect to the Lorentz group into irreducible parts of a 
second rank symmetric tensor. In the analysis of con
stant solutions, 1 it has been shown that there exist four 
basic behavioral patterns. 

In the analysis of constant solutions it was found con
venient to introduce the matrix M, whose components 
are given by 

(1.4) 

The constant solutions could then be discussed in terms 
of Jordan-structure of M. Since for constant solutions, 
°G""=lG,,,,=O, M satisfies two simultaneous quadratic 
equations, the possible Jordan forms of M are thereby 
restricted, and it turns out that they are controlled by 
the values of the parameters. The results of these re
strictions are classified in Theorems 5 and 6 in Ref. 1. 
This algebraic analYSis is of course useful in consider
ing solutions to (1.2) that are more general than con
stant; the analysis also provides the analysis of the al
gebraic structure at a point (as opposed to over the 
whole manifold) of 0g"" and 19"" that may be obtained by 
an equation spUtting which determines a differential and 
an algebraic problem. In Ref. 1 we have called a solu
tion such that °G""=lG,,,,=O, bi-Einstein. 

Remark: The attitude taken for the Eqs. (1.2) is that 
they are to be understood to be defined on a connected, 
Hausdorff C'" manifold. Interesting complications of the 
manifold structure can be expected if one requires that 
the manifold also be inextendible, for now the concept 
of maximal analytic extension can be dichotomic. The 
difficulty of "simultaneous" extension is in fact seen in 
the solution presented here. [See Sec. V. J 

In this paper we will have recourse to results of the 
algebraic problem in M contained in Ref. 1 to produce 
an exact spherically symmetric solution to (1.2). The 
appropriate theorems constitute the following section. 

II. EQUATION SPLITTING, SOLUTIONS WITH 0g 
EINSTEIN-LIKE, AND RESTRICTIONS ON LOCAL 
STRUCTURE 

A. The algebraic M problem 

Equation splitting consists in splitting terms off a 
single equation which equates a partial differential ex
pression to zero, and then equating the remaining ex
pression and the split-off expression to zero. This 
yields two equations which are simpler to solve than the 
original. On obtaining solutions to each of the Simpler 
equations, one then tries to adjust one of them so that 
it is also a solution of the other equation. 

The two sets of partial differential equations (1.2) 
have many possible splittings, however, one of them 
recommends itself most highly. Not only are solutions 
of °G IJ = 0 aVailable, but if one of these solutions can be 
matched with the remaining equations, a solution to the 
general equations which most closely resembles ordi
nary gravity for °glJ results. 
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If this splitting is used in the O-equation of (1.2), the 
equation is split into a differential problem and an al
gebraic problem. The algebraic problem is essentially 
a quadratic equation for the matrix M, and is a restric
tion on its algebraic structure. This restriction is now 
explicitly investigated. Consider the splitting of the 
field equations (1.2) obtained by setting °G,J =0, thus 
only the O-field equations (1.2a) is split; the remaining 
terms of (1. 2a) must therefore sum to zero yielding 

,r::-ogr°A °glJ - to J.L(Og-' 19.yglJ + ° J.L 19lJl 

- r-rg[k21 J.L 1ft10guOglJ] =0. 

After contracting this equation with Oft I , it may be put 
in the form 

[0 A - t ° J.L(Og-. 19 • .>JIl; 
-r::rfrg 

+0 J.L0ftllg'J - r-::- 1llk2 1ft I °glJ =0. 
v_Og 

Using the definition (1.4) and suppressing indices this 
equation may be written in terms of the. matrix M: 

[OA _ to Il(TrM)]I + ° 11M - [detM]1/2 lllk2U-1 = 0 

where I is the 4x4 unit matrix. Multiplication by M 
yields a quadratiC equation (2.1) which with the equation 
splitting assumption is assumed to hold over some re
gion of the manifold. 

We solve the algebraic problem for the single splitting 
of Eq. (1.2a) in a series of steps; later the additional 
restrictions obtained by the "double splitting" of both 
(1.2a) and (1. 2b) into algebraic and differential problems 
are conSidered. The steps of the single splitting are: 
First, the quardratic nature of the Eq. (2.1) which is 
to be satisfied by a 4 x 4 matrix M is a restriction on the 
Jordan form of M. The allowable Jordan forms are 
found; this step depends only on the quadratic nature of 
(2.1). Second, if these forms are substituted into (2. 1) 
the situation arises that the form solves or does not 
solve (2.1) depending upon whether certain of the 
theory's parameters vanish or do not vanish, and, also 
upon whether or not they satisfy certain other algebraic 
constraints. In some cases the eigenvalues will be de
termined by (2.1) and in some cases not. We therefore 
distinguish separately the combination of vanishing and 
not vanishing of all the parameters, then in each of 
these solutions all the allowable Jordan forms with un
specified eigenvalues may be tested, whereupon any 
constraints on the parameters or determination of eigen
values arise explicitly. If the double splitting assump
tion is superposed on the results of single splitting, the 
additional necessary and sufficient conditions are con
tained in a stated lemma. The application of the lemma 
then produces the double splitting conclusions in a 
straightforward way. 

The algebraic problem states therefore, that M must 
satisfy the matrix equation 

M2+(OA _tTrM)M_~lJi (detM)+1/2I=O. (2.1) 
0Ji 0Ji 

Either (i) this is M's minimal polynomial, or (ii) M has 
only one characteristic value and is diagonal: 

19/i=CXOgIJ • 
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The constant value of a can be calculated from (2.1) 
and the result is 

°A a=- if(ll,oO 
J.L 

(2.2) 

where 

J.!''''°J.L+k21 J.L. (2.3) 

The Jordan forms are now given: consider Case (0. 
Let (2.1) be M's minimal polynomial. Being quadratic 
there are either 

(i. a) two distinct real roots appearing diagonally 

Al 

or 

(i. b) one real root appearing as 

or 

Or 

(i. c) a pair of complex conjugate roots each appear
ing twice. 

This exhausts the algebraic possibilities of the local 
structure of solutions obtained via the indicated equation 
splitting. 

The two major alternatives following Eq. (2.1) are, 
of course, the direct result of the quadratic nature of 
(2.1). In general, substitution into (2.1) of the Jordan 
forms just listed, will place restrictions on the charac
teristic values, and on the parameters of the theory. 
There is, moreover, an additional complication which 
results from certain of the parameters possibly having 
the value zero; this possibility allows modification of 
the constraining power of (1.2). To be certain of exhaust 
ing the possible behaviors of M, as determined by (1.2), 
the Jordan canonical behavior will now be exposed taking 
into account these various complications; the actual re
sults of the analysis and not the tedious details are con
tained here. 

Theorem: All possible Jordan canonical forms of the 
matrix M constrained by Eq. (1.2) can be given as 
follows: 

or 

(I) If °A,oO, °J.L,oO, IJ.L,oO, there are only two possible 
structures: 

1. M = AI, A = ° AI J.L, J.L * ° 

2. M= 
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A1 =V
2Xz, 0J.L2,o1J.L2k\ i.e., v2,o1, 

A2 = 2°A/o J.L(1 - vZ) 

where v == - (I J.LjO J.L)k2 with v > 0. 

(II) If °A =0, °J.L,oO, IJ.L,oO there are five structures to 
be distinguished: 

1. M=Al, J.L=O 

and A is real and not zero but otherwise undetermined; 

2. M= or , fl=O 

and A is real and not zero but otherwise undetermined; 

AU A2 are otherwise undetermined if real, but are com
plex conjugates if complex, and 

AIA2>0 ifofl+k21 JJ.=0, 

but 

A1A2 < ° if ° J.L - k
21 

J.L = 0. 

(III) If ° A * 0, ° fl * 0, I fl = ° there is only one structure 
possible: 

M=AI, A=oA/°J.L, J.L,oO. 

(IV) If ° A * 0, ° J.L = 0, I J.L * ° there is only one structure 
possible: 

M = AI, A = k-2 0A/I J.L, J.L =0. 

Note: Cases (III) and (IV) are obviously boundary cases 
in parameter space of case (1.1.). 

(V) If °A=O, °J.L,oO, IJ.L=O then M=O; therefore we 
drop the case. 

(VI) If °A,oO, °J.L=O, IJ.L=O then either M=O or TrM 
= 0, but M is otherwise undetermined and there 
are no further constraints on the parameters. 

(VII) If °A =0, °J.L=O, IJ.L,oO M must be singular; there-
fore we drop this case. 

So from the viewpoint of two g-cones per point, solu
tions which may be obtained by the simplifying assump
tion of single equation splitting are not necessarily 
tri vial, i. e., mono conic (0 g .. = (III g . .>. 

B. Double equation splitting 

In this subsection the concept of equation splitting is 
pushed further. 

If in addition to °G1i=0, IG ii =0 is also imposed, M 
must satisfy an additional matrix equation, which by the 
nature of the full equation set is the 0 - 1 dual of (1.2); 
this equation may then be gotten formally by exchanging 
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° and 1 in (1.2); this exchanges k - k- l
, M - M- l

• The 
result is 

1 
xM _ k2 / (detM)1/2] == 0. 

p. 
(2.4) 

The additional information contained in (2.4) beyond that 
in (2.1) is given by the following lemma: 

Lemm a: If M satisfies (2.1) the necess ary and suf
ficient conditions that it also satisfies (2.4) are given by 

(A) (detM)1/2 = k-2 (OA/11\) , 

(B) 401\11\=0p.1TrM+lp.°TrM"1. 

Proof: To prove the necessity of (A) multiply (2.1) and 
(2.4) by M"l, take determinants and solve for (detM)1/2 

To prove the necessity of (B), subtract (2.1) and (2.4) 
and use (A). Sufficiency is mere substitution, 

If one applies the foregoing lemma to each of the cases 
in the previous theorem bearing in mind that both 11\ 
=0,11\*0 must be considered, the surviving cases (the 
others demand singular M), are given by the following 
theorem. 

Theorem: The nonsingular Jordan canonical forms of 
all M constrained by Eqs. (2.1) and (2.4) can be given 
as follows: We list classification numbers from the 
previous theorem only where they survive and state only 
the additional information supplied by (2.4) or equiva
lently by the preceeding lemma. 

(I) 1. 01\11\== (k- l0 p.+kl p.)2=- ~2, 11\*0, 

01\11\ I" 
2. 4 -- v2 = - (1 _ V 2 )2 v=--~ k2 • o p.lp. '0 P. , 

(II) 11\ = 0 but no additional inform ation; 

(III) 01\I1\=k-20 p.2, 11\*0; 

(IV) 01\11\=k21p.2, 11\*0. 

III. SPHERICAL SYMMETRY 

A. Spherical symmetry in a single metric context 

Let g,," be a sufficiently differentiable symmetric 
tensor field with hyperbolic signature on a smooth 
manifold (any singular points are not part of the manifold 
if one requires local Minkowskian structure for the 
manifold); g,," is said to be spherically symmetric if 
there exists a set of three space-like vectors v:, a 
= 1, 2, 3, Jl = 1 , 2, 3,4 such that 

£vlL = C"bV" (Ref. 7) (3.1) 
c ~ C a 

where ~~ are the structure constants of the Lie group 
50(3) and £0 is the Lie derivative operator with respect 
to vc ' and 

(3.2) 

The manifold action of the isometry group SO(3) is also 
taken to be transitive on orbits of space-like 2-surfaces, 
which are in fact 2-surfaces of constant curvature. B 
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B. Spherical symmetry in a two-"metric" context 

In extending the concept of spherical symmetry to two 
hyperbolic metrics, attention must be paid to the re
quirement that the Killing vectors VIL be space-like, for 
now there are two such concepts. It the two cones de
fined by 0g and 19 coalesce there is no problem; 
biconicity ~an be ci~sified in two ways: the cones are 
concentric but distinct or their symmetry axes are dis
tinct. These two situations engender two possible de
finitions of simultatneous spherical symmetry: 

Strong spherical symmetry is said to hold for 0g., and 
19 if there exists a single set of Killing vectors obeying 
(3':1) which are space-like for both 0g,. and 19 .. , and 
these Killing vectors generate transitive actions on two
surfaces space-like with respect to both 0g .. and Ig ... 

Weak spherical symmetry is said to hold for 0g and 
19 if there exists a set of O-Killing vectors, obeying 
(3 :'1), whose elements are O-space-like, and there exists 
another set of vectors obeying (3.1) all of whose ele
ments are I-Killing and l-space-like. Moreover, each 
set of Killing vectors generate transitive actions on their 
respective space-like 2-surfaces. 

In the context of strong spherical symmetry the still 
stronger condition of strong spheristasis can be imposed 
in exact analogy to the single-metric case; we have 
occasion to use this in Sec. IV. 

Weak spherical symmetry is weak enough to include 
the bizarre possibilty that the manifold coordinates do 
not have the same physical interpretation for both tensor 
fields. This already occurs, for different manifold re
gions, in GR in the R- and T-regions of the Schwarzs
child solution. 9 We note that the solution which we 
present does not present such pathology. 

In the following we will consider a restricted form of 
weak spherical symmetry. Even so, this is still suf
ficiently weak a concept that our method for obtaining 
the solution leaves one functional degree of freedom un
determined. We discuss this situation in the final 
section. 

If g .. is spherically symmetric and given in terms of 
spherical polar coordinates, and a time variable t, it 
has the well-known form: 

ds2 = exp()9(r, t)df2 l 
- [exp(Q!(r, t))dy + p(r, t) dn2 +2y(r, t)drdt] 

where 

dn2 =- dfP + sin2 e d¢2; 

the center of symmetry is of course r=O. 

Coordinate transformations lO 

r'=f(r,t), t'=7"(r,t>, 

(]' == ± e + Nn, cf>' == cf> + Mn 

where M, N are integers, and f and 7" are arbitrary 
functions of r, t such that 

(3.3) 

(3.4) 

(3.5) 

f~7"t - ft7"~*O, (3.6) 

preserve the Killing vectors of (3.3). (The subscripts 
r, t on functions indicate partial derivatives.) 
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Since our solution method will force the hypothesis of 
Birkhoff's theorem we define: 

g •• is static if g •• has a time-like hypersurface orthog
onal Killing vector. Thus, there exists a coordinate 
system such that 

a 
aTg,,"=O. (3.7) 

Restricting the g of (3.3) also to be static, limits the 
transformations (3.5) further to 

r' =j(r) , t' =t + h(r), 
(3.8) 

B'=± 8+N1f, ¢/=¢+M1f. 

The form (3.3) is then also restricted so it can always 
be cast in the form 

ds2 = exp[$(r)]dt2 - (exp[a (r)]dr2 + r2 dQ2). (3.9) 

Both 0g •• and 'g .• may be put in the form (3.9) but in 
general not simultaneously. Let the unprimed coordinate 
system be that for which 0g assumes the form (3.9) and 
and the primed system be the one for 'g ... In the next 
section we exploit the existence of these two "simplify
ing" coordinate systems to obtain the solution. 

IV. THE SOLUTION 

In Sec. II a technique of equation splitting was intro
duced for Eq. (1.2) which determined a differential 
equation problem, an algebraic problem, and a matching 
problem. Equations (1.2) are written in the form 

DC,," + °AOg" " = oJ,," , 

'C,," + 'll. 19,," = 'J,,". 

The equations are then split giving 

DC,," +oAOg,,"=O, 

'C,,"+IA' g,,"=O, 

oJ,," =0, 

'J,,"=O. 

(4.1 a) 

(4.1b) 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

The solution to the two parts of the differential problem 
(4.2) in respectively simplifying coordinates is well 
known when spheristasis is imposed. In fact Birkhoff's 
theorem shows that only static solutions are possible 
for spherically symmetric metrics satisfying vacuum 
Einstein equations 0

11 

Also, when spheristasis holds, the algebraic problem 
posed by (4.3) is almost solved: (4.3) represents two 
quadratic equations in the matrix M defined by (1.4). 
Spheristasis leaves M almost in its Jordan-form, and 
the allowable Jordan-forms have been completely 
analyzed in the theorems of Sec. II. The matching prob
lem is the result of fitting our calculated M to one of the 
allowed forms. In doing this, M must be calculated 
entirely in one (unprimed) coordinate system. 'g .. is 
given in primed coordinates; we then map back to un
primed coordinates using a priori unknown functions 
from (3.8) (we drop the transformations of angular 
variables), which are, subsequently, to be determined 
by (3.3) and the algebraic theorems of Sec. II. 
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Note: We might have considered the more general 
splitting 

°C,," +OAI0g,," =0, °J""_°'A.z°g,,,"=O, 

'C,,"+IA,' g,,"=O, 'J,,"_I A2' g,,"=0, 

where 

The algebraic problem for spheristasis however, would 
then, force °A2 = 'A2 = 0, so no generality is in fact 
gained. 

Now (4.2) determines 

+Oy(r) 

o 
o 

_ ' y-'(r') 0 

o - (r/)2 

(4.4a) 

_ (r,)2 sin2 8 

(4.4b) 
where for brevity we define 

° () 1
20m 

lOA _.2 yr =' --+3 r, 
r 

The unknown coordinate transformation 

r' = I(r) , t' = t + h(r) 

gives the Jacobian matrix 

[
axIal == 
oX'J 

1 hr 0 0 

o Ir 00 

o 0 10 

o 0 01 

So, the tensor transformation law gives 'g .. in un
primed coordinates: 

'B 'e ° 0 

o 
o 0 -/2 0 

o 0 0 -12 sin2 e 
where 

1 _1 [+f )] h~ 
B = y}\r -'y[j(r)] 

For notational convenience we redefine 
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(4.5a) 

(4.5b) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 
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Then. JI defined by (1.4) is calculated in unprimed co
ordinates to be 

IE Ie 

o 

,- - - - - - - -l- - - - - (4.11) 

o 
:(£Y 
I 

The algebraic problem (3.3) determines two quadratic 
equations for M which can written1 as in Sec. II: 

(4.12a) 

1 1M 
M2+k20~ (detM)I/2(1TrM-1)M-k20M (detM)1/ 2I=0. 

(4.12b) 

From (4.12) M can have at most two characteristic 
values, while (4.11) apparently allows three. So the 
algebraic problem will be a statement of degeneracy for 
the characteristic values of (4.11). 

The two characteristic values of the upper 2 x2 sub
matrix are 

1 [(IE \ 2 ] 1/2 
2S. =o~ - 1AoE± 0E +IAOEj - 41C2 . (4.13 ) 

From the algebraic problem as analyzed in the theorems 
of Sec. II we know that there are two classes of Jordan
forms for M, those where the characteristic values are 
determined functions of the parameters 011., 111., ° M, 1 M, 
k 2 and therefore constant over the underlying manifold, 
and those where the characteristic values are not de
termined but yet we have algebraic constraints on the 
parameters. A situation where M is determined to be 
constant is clearly unsatisfactory as it can only lead to 
trivial solutions for our situation since it forces f(r) 
= (const)r. 

After one abandons the trivial cases, only two remain: 

(4.14) 

where 

S+=S.= (f~»)2. (4.15) 

For this we learn from Sec. II that M = ° M + k 2 1M = 0 
must also hold. This the exceptional case. 

2119 

(2) M= 

S 0 

OS 

o 

o 
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(4.16) 

where 

(4.17) 

From the first theorem of Sec. II (Case II.3) we learn 
that S* - (j/r)2 and that S, (j/r)2 are undetermined by 
(4.12) if they are real but conjugates if they are com
plex and further, if they are real, that either 

OM+k21M=0-S(~r >0 

°M-k21 M=0-s(fY < O. 

(4.18) 

(4.19) 

We return to these inequalities and their satisfaction 
later. 

In both cases the discriminant in (4.13) vanishes: 

G! +lAOEY =41 C2
• (4.20) 

Using (4.9), (4.20) determines a nonlinear differential 
equation in the two unknown functions hand f. 

py[j(r)JJ2 - h; + f; °yZ(r) = 4°y f;h; 1 y.1. (4.21) 

The conformal case (1) will provide an additional dif
ferential equation for the two unknown functions h, and 
f; this case, although more complicated, may answer 
the question of the existence of conform ally related 
solutions in the exceptional case. 12 We hope to return to 
this question in a future publication. 

Before continuing to a solution of (4.21) it is worth 
remarking on the perhaps disturbing absence of control 
on the functions implied by (4.21); note also that in spite 
of the fact that either (4.18) or (4.19) is forced, M'S 
will not appear in the solution, thus their role as coupling 
constants is vitiated in these solutions. The equation 
splitting assumption has negated a good deal of the 
dynamical control exerted by the fields oJ{ .. and 1J{ •• on 
each other since they both determine vacuum Einstein 
spaces in the usual sense of GR. From this point of view 
one should not criticize the lack of control in (4.21) but 
marvel that it has any content; the Significance of the 
freedom is, however, unclear at present. 

Now, as long as the freedom is available, set 

h(r)=O. (4.22) 

(We are now in the regime of strong spheristasis.) Then 
(4.21) reduces to 

[ty[f(r)J]2 + f;°yZ(r) = 0, (4.23) 

which in turn yields a linear, separable ordinary dif
ferential equation 

df . dr 
1 - 21m / f - [111. (- )/3] j2 = ± l -=-1 -_-::::2;;-0 m-/'r-_'[Fn0A:-('_') /-;::3:T]r"' 

(4.24) 

where i=r::1, and for calculational ease we define 

011.(_)= _0Il., 111.(_)= _111.. 

Although the integral to be performed in (3.24) can be 
done in principle [J ds/ (1 - a/ s + bs2

) is a linear combina
tion of three integrals of the form f s ds/(s +A)], the 
work can be simplified by asking the following question: 
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Is it possible that a lump of pure 19-curved space may 
give rise to a gravitational mass in 0g? As we will see 
the answer is yes and, moreover, the only region where 
deviations from GR are predicted for these solutions is 
the inside of Schwarzschild singular surface. 

Setting the conditions for the above question, 

1m=0, o.A=O, 

(4.24) then becomes 

df . dr 
± 1 _ [lA (_)/3]j2 = Z 1 _ 20m/r 

(4.25) 

(4.26) 

The ± distinction turns out to be useless so + is chosen 
uniformly from here on, 

We will need to distinguish the cases 1A > 0, 1A < 0: 
If 1A > 0, with the signature chosen (+ - - -), this is the 
condition for a hyperbolic universe of constant negative 
curvature. (cL, however, the end of this section,) 

Let 1A > 0; (4.26) integrates to 

tan-1i·h!3fi == v'X/3[z + i(r - 2m + 2m In(r - 2m))] (4.27) 

where z is a complex constant of integration, 

Since there can be no confusion now, the left super
scripts are to be dropped on lA, and om. 

Equation (4.27) can be rewritten as 

v'X/3f== itanh[ v'A73(- iz - 2m + r + 2m In(r - 2m»]. (4,28) 

The coordinate transformation function f(r) is in gen
eral a complex function. It will be convenient to define 
the complex function 

a (r) = {j\j3(- iz - 2m + r + 2m In(r - 2m», (4.29) 

so 

.fA73f= itanha (r), (4.30) 

If A < 0 is chosen, then one merely replaces fAT3 with 
r-:::tJ3 and tanh with tan in (4.29) and (4.30). It is clear 
from its functional form that f can be a legitimate co
ordinate transformation either inside or outside of the 
Schwarzschild radius. 

Now in order to make f purely imaginary, we note that 
ImO' (r) == 1i\73(2m 1T - z) is constant and further that 
tanh(z +iN7T)==tanhz for any integer N. Therefore, 
chOOSing any z N' such that 

(4.34)13 

as constant of integration, is a general, sufficient con
dition for f to be purely imaginary. (If f were not so then 
the matrix M would be complex and the algebraic prob
lem would trivialize the solution; this is a consequence 
of the first theorem of Sec. II.) 

With the choice (4.34), a(r) becomes 

0' (r) =:= !i\73(r - 2m + 2m In(2m - r» + iN7T (4.35) 

and 

,; A!3f(r) == i tanh-!i\!3(r - 2m + 2m In(2m - r». (4.36) 

Now since only U]2 enters the expressions for the 
components of 19 there will be no imaginary parts en
tering the final solution [this does not of course neces
sarily follow if (4,25) is not chosen]; the factor i will, 
however, tamper with the Signature of 1 g .. : 

19,. dx' dx' 

= [sechO' (r)]2 dt2 - f;[sechO' (r)]-2 dr 

3 + j\[tanha (r)]2 dQ2 for r< 2m 

and, of course, 

(
2m) (2m )-1 2 

0g .. dx' dx' == - r -1 dt2 + -y- - 1 dr - r dQ 

for r<2m 

We notice, however, that (4.23) makes 

U
r

]2 == - 1'1 lOy < 0 

for both r~2m and A ~O. 

(4.37) 

(4.38) 

Also USing (4.33) we have, for A >0 and r<2m, 

0g .. dx' dx' = [Oy(_)]-l dr - °Y(_)dt2 
- r dQ 2 

and 

(4.39a) 

Moreover, we must insure satisfaction of one of the 
inequalities (4.18) or (4.19). It is not hard to verify that 19 .. dx' dx' == [o.y~~)]2dr +lydf +~(1 _ly)dQ2. 
for both signs of A 

(4.39b) 

S < 0 when r < 2m and .'. ° IJ. + k21 1J. = 0 must hold, 

and 

S>Owhenr>2m and ,'. o.lJ._k21 1J.=0 must hold; 

provided that f(r) is purely imaginary. 

The most physical thing to do seems not to interfere 
with GR outside of the Schwarzschild radius, So we re
strict the domain of fir) to region r < 2m and enforce the 
exceptional case IJ. = 0. IJ. + k 2 llJ. = O. Then, we rewrite 

a (r) = v'X73(- iz - 2m + r + 2m In(2m - r) + i2m7T), (4.31) 

so 

IX73f(r)=itanhO'(r) for r<2m, (4.32) 

and 
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Notice that in the region r < 2m 0g .. is hyperbolic and 
that the distinguished time variable must be chosen to be 
r; we choose r also as time variable for 19 but 19 happenf 
to be positive definite, and so with A> 0 it determines a 
closed space of positive definite curvature. t is now a 
space-like variable and although we still have a sym
metry for (4.39) from the fact that there obviously 
exists a coordinate system in which 

~o _~1 -0 at g,.v - at g,.v - , (4.40) 

we may no longer call this symmetry stasis, since the 
Killing vector is now space-like with respect to 0f{ ... It 
is still however hypersurface orthogonal, with the hyper
surface being time-like with respect to °15 .. , It is in
teresting to note that in the region r < 2m an. analytic 
continuation14 from t - it defines a hyperbOlic 1 f{ where 
t is once again the distinguished time variable, while °15 
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has signature (+ + - -). So on enlarging the space
time to the direct sum of two manifolds I and II with r 
< 2111 we have 0g •• and Ig •• both real and in 

I: 0g, hyperbolic with time variable rand 

I g , positive definite, 

while in 

II: Ig hyperbolic with time variable t and 

0[[ with signature (+ + __ ). 

Is it possible to push this solution out of the region r 
< 2m? Considering only 0g , the standard methods of 
null coordinates B in the mM.ner of Eddington, 15 
Finkelstein,16 and Kruskal17 can of course be used to 
unite the two manifolds r < 2m and r> 2m. But what of 
Ig •• ? 

Under the coordinate substitution 

t-v=t+r* 

where 

r* =r+2m In(r- 2m), 

Eq. (4. 39b) becomes 

I 

1 g dx. dx· = ly dv2 + 2 ---.r... dr2 .. 0y 

(4.41) 

(4.42) 

Iy 3 
-2 0y drdv+A(l-1y)d~, (4.43a) 

while it is well known that (4.39a) becomes 

0g dx. dx· = - (2m -1) dv2 - 2 dv dr - r2 d~. (4.43b) .. r 

0g .. is nonsingular on the Schwarz schild surface, but 
the limit of Ig •• as r - 2m must be treated with care: 
The following limits are instantly available as r- 2m: 

y(r) - - 00, fer) - i/31K, 
Oyer) - 0, Iy(r) - o. 

Also, 

and 

lim 01.~ = ~ 16:2 

r-2my 

00 

~ 
0 

. ly -
hmo= -8m 
r~ 2,. y 

00 

if fi:73 > 1/2m 

if fi:73 = 1/2m 

if fi:73 < 1/2m 

if ,ffJ3 > 1/4m 

if fi:73 =1/4m. 

if,ffJ3 < 1/4m 

Therefore, if 

v'A73 > 1/2m, 

lim Ig dx· dx· = ~ dQ2 
~2", •• A' 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

the same limit obtains in Schwarzschild coordinates. 
A more interesting limit where 19 is "spatially nonsingu
lar" occurs when JA73 = 1/2m, so that .fA73 > 1/4m. 
Then, 
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The limit (4.48) reminds us, however, of the bottle 
picture of an almost closed internal space which necks 
on to macroscopic space-time; only the angular part of 
19 •• survives in the limit r - 2m, so 19 •• almost van
ishes. Now one may satisfy the field equation (1. 2) in 
the region r> 2m with the exterior Schwarzschild solu
tion and 

19 •• =0 for r>2m. (4.50) 

Although 0g passes continuously between r> 2m and r 
< 2m, the i;;terior and exterior solutions for 19 suffer 
a finite saltus in the angular terms at r=2m. Conse
quently, the field equations (1.2) cannot be rigorously 
satisfied at r=2m, so (4.43) together with (4.50) cannot 
be called a global solution; the "neck" is discontinuous. 
Yet the closeness to a bottle picture solution is tantaliz
ing. There are many ways of removing some of the re
strictive assumptions used here which might avoid the 
discontinuous neck, and they all appear to complicate 
the algebraiC problem significantly. We hope to return 
to these problems at a later date. 

v. SUMMARY AND CONCLUSION 

With the imposition of strong spheristasis on a pair of 
hyperbolic metrics we have shown the existence of non
trivial solutions to the equations, proposed earlier, of 
a strong and weak gravity theory by use of equation 
splitting. Attempts to generalize to weak spheristasis 
is shown to leave apparently undetermined the additional 
functions that one required. The equation splitting de
termines a differential problem where knowledge of GR 
can be made use of, and an algebraic problem which is 
handled by an earlier analysis. This algebraic analysis 
leaves only one possibility open involving the exception
al case, and this yields a solution either inside the 
radius r=2m with °/1+k21 /1=0 (the exceptional case) 
holding or a solution outside the radius r=2m with 0/1 
- k21 /1 = 0 holding; it is, of course, clear that these 
solutions inSide and outside r= 2m cannot be continua
tions of one another, since their respective existences 
force different conditions on the parameters and the 
intersection of these conditions is completely trivial (0/1 
= 1 /1 = 0), negating all coupling of the two fields. 

One may, however, continue the solution for 0g in 
the usual way, to the larger manifold which includ~s the 
region r> 2m by adopting Eddington-Finkelstein co
ordinates; in these, however, 19 does not lose its 
Singularity at r= 2m suggesting ihat there is no coordi
nate system in which both 0g and 19 are simultaneous
ly and continuously extendibi~. In thi·s case, one may 
continue 0 g .. to r> 2m and define 19 •• = 0 in this region; 
by doing this we satisfy the field equations in both re
gions. Thus, vacuum general relativity becomes modi
fied only inside of the Schwarzschild radius. 

With regard to the interaction specified by the two 
vertex terms of the interaction Lagrangian the two cases 
°jJ.+k21 /1=0 and °/J.-k21 J..l.=O seem to maximize the 
weakness of coupling with the constraint ° /J. '*" 0, 1 JJ. '*" 0: 
In an analogous coupling of scalar fields ° JJ. + k21 JJ. = 0 
actually eliminates the coupling and ° /1 - k21 JJ. = 0 causes 
the vertices to coalesce. The form of the equation 
splitting has already restricted the coupling to be very 
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weak and this restriction forces one of these two cases. 
In spite of this extreme weakness of coupling, however, 
the solution suggests some aspects of the sought bottle 
picture solutions that were described in Refs. 1,2. 

We note that if lA were chosen to be lA < 0, the cor
responding pair of solutions would exhibit an infinite 
number of singular surfaces. Such a solution does not 
appear to have any relation to the bottle picture and so 
it is omitted. 
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A Clifford algebraic approach to superfields and some 
consequences 
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Frames provided by Clifford algebras C are considered for the purpose of expanding a field 
multiplet (containing. possibly. both bosons and fermions). After giving a brief-mainly geometrical
description of Clifford algebras, the main tools of the present scheme are introduced: a scalar 
product in C", a conjugation operation, and a "Lorentz covariant derivative." It is described how 
these Clifford algebraic tools can be applied in order to obtain free massless Lagrangian expressions 
for a number of field theoretical models. It is also shown how gauge fields can arise within this 
scheme. It appears possible that the suggested formalism can lead naturally to spinor field operators 
as "gauge fields." A specific example which can lead to a two-component "gauge spinor" is 
discussed. Possible lines of investigation which could solidify this potentially rich approach are 
suggested. 

I. INTRODUCTION 

The concept of a superfield has recently been intro
duced by Salam and strathdee. 1 Briefly, the idea behind 
a superfield is that it brings together, within a single 
expression, different kinds of ordinary field operators. 
Both the Salam and strathdee superfield expansion as 
well as a similar one by Fronsdal2 constitute well-de
fined and elegant structures which aim to incorporate 
the central features of the so-called supergauge trans
formations. The latter have been proposed by Wess and 
Zumin0 3 in the four-dimensional spacetime and have ex
hibited early signs of a promising approach. 4 

The aforementioned superfield expansion is achieved 
in terms of internal anticommuting variables 0"" 
0'= 1, " .,4. Explicitly, a scalar (supergauge) super
field has the form 

</J(x c9) = <p(x) + cp'" 0 '" + t~l",al 0 ",c9a + i ~l",aYl c9 at c9ac9y 

In (1) the 0' s are objects which behave like (if not 
identified with) constant Majorana spinors. 5 

(1) 

We consider, in this paper, possible merits of em
ploying a different framework for the expansion of a 
superfield, namely Clifford algebras. There are several 
reasons for conSidering these algebras. Before enu
merating some of them it is important to point out that 
there is a basic difference between the present approach 
and that suggested by Eq. (1). Namely, that we are em
ploying a frame from the outside in order to expand a 
superfield. In particular, we do not accept the presence 
of the (anticommuting) internal variables in addition to 
the spacetime points. Our major motivations are the 
following: 

(a) It has already been observed6 that the generators 
of supergauge transformations form a Clifford algebra. 
Accordingly, the embodiment of a superfield within a 
Clifford algebraic structure could make possible the 
description of supergauge transformations as inner 
transformations, L e., through Clifford multiplication. 

(b) A Clifford algebra constitutes the widest possible 
algebraic structure which can be built from a given vec-
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tor space. NOW, the latter provides a framework for 
expanding what one ordinarily calls a vector (e. g. , 
crt + f3] is an 0(2) vector with real numbers a, f3 as com
ponents). Since we are interested in employing algebraic 
entities for superfield expansions, it is natural to seek 
them in algebraic generalizations of frames we are 
familiar with. 

(c) A Clifford algebra C" of an n-dimensional vector 
space V" has dimension 2". Thus, for n = 3 one would 
expect to accommodate the Wess-Zumino scalar super
multiplet which has eight field components (two scalar, 
two pseudoscalar, and one Majorana spinor). Similarly, 
for n = 4 one expects to accommodate the 16-component 
Wess-Zumino vector supermultiplet. On the other hand, 
we shall suggest that even the n = 1 and n = 2 Clifford 
algebras constitute legitimate frameworks for super
field expansions. Quite possibly algebras with n > 4 
could be considered. It would, then, follow that the 
framework of Clifford algebras can be employed for a 
multitude of field theoretical models both of the ordinary 
field variety and of the mixed supermultiplet variety. We 
hope that this last statement can be clarified after we 
have presented some specific examples. 7 

The paper is organized as follows. In Sec. II we give 
a very brief description of ·Clifford algebras concentra
ting mostly on geometrical interpretations. Our analysis 
is based on the approach of Ref. 8 and could be omitted 
by the reader who is familiar with Clifford algebras. 
We proceed to introduce, in Sec. III, our concept of a 
superfield as well as the main Clifford algebraic tools 
which are to be subsequently used. We indicate some 
results which can be arrived at within our framework. 
The emphasiS is on the generation of free massless 
Lagrangian expressions for each specific model under 
consideration. It should become evident that our aim is 
to incorporate within the proposed Clifford algebraic 
approach basic field theoretical models (e. g., complex 
Hermitian field, Dirac spinor) as well as field multiplets 
which mix bosons and fermions (we restrict our atten
tion to scalar and spin-t fields in this paper). In Sec. IV 
we suggest, through two specific examples, a manner 
according to which gauge fields can be introduced within 
the proposed schemeo What should become evident from 
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Our exposition is the fact that Clifford algebras provide 
us with extremely rich-and, consequently, hard to 
handle-structures. Accordingly, we list in Sec. V, in 
the form of an outlook, several questions whose clarifi
cation is essential before any strong foundations for the 
suggested scheme are established. Finally, we give, 
in an appendix, an explicit derivation of one of the 
Lagrangian expressions mentioned in Sec. ill by means 
of our Clifford algebraic formalism. 

II. ELEMENTS OF CLIFFORD ALGEBRAS 

In this section, we shall give a short description of 
Clifford algebras. 8 We concentrate heavily on geometri
cal aspects which, hopefully, give more concrete 
images of what is involved. 

Let V" be a tangent vector space to some n-dimen
sional manifold;}]. Our considerations will be restricted 
to flat manifolds so that, for all practical purposes, ;}] 
and V" can be identified. The vector space V" is defined 
over the reals lR. Let {e k}, k = 1, ... ,n, be an or
thonormal basis for V n- with some metric structure (V" 
can possibly be pseudo-Euclidean). The Clifford algebra 
C" of V" can be constructed once we introduce an (as
sociative) Clifford product which we formally denote by 
placing two (Clifford) elements next to each other. As 
an algebra C" will also have a vector space structure 
which is specified via a rule of addition and the employ
ment of a set of scalars. The Clifford product is dis
tributive over the addition. We put the elements of th~ 
basis {e k} into a one-to-one correspondence with ele
ments of en and denote their images (to be called 1-
vectors) by E k' k = 1, ... , n. The Etl constitute only a 
part of the basis of C" and we shall think of them, 
geometrically, as representing one-dimensional direc
tions. In strict differential geometric language they 
correspond to 1-forms over the manifold Ih. We now 
form all possible independent anti symmetric products 
E,E" E,E,E;" etc., up to E 1 E2 ···E". The resulting 
quantities are called 9 unit 2-vectors, 3-vectors, ... , 
n-vector, respectively. Note that, to within a sign, only 
one unit n-vector can be formed. 

We think of an r-vector as an oriented r-dimensional 
volume determined by the r 1-vectors entering the pro
duct. The unit n-vector, on the other hand, exhausts 
the dimensionality of the space and is not thought of as a 
directed volume, but, rather, as the unit pseudoscalar 
in C". In order to justify such a characterization we 
must first give the complete description of a Clifford 
product which goes beyond the antisymmetric part we 
have already mentioned. The Clifford product of any two 
elements W, Z of C" has a symmetric (.) and an anti.,. 
symmetric (A) part: 

WZ=W·Z+WAZ. 

Now, two 1-vectors, which correspond to linearly in
dependent vectors in V"' have a vanishing symmetric 
part in their Clifford product so that, e. g., El E2 
=E1 AE2. On the other hand, products like (E1)(E1E 2) 

(2) 

do not vanish in C n' In particular, E! is a number 
identical to the square norm of e;, in V". More generally, 
the product between an r-vector and an s-vector is a 
combination of I r - s I and (r + s )-vectors 10 (the latter 
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vanishes if r + s > n or if the r + s I-vectors involved 
correspond to a linearly dependent set in V"). By in
troducing the number 1 as a O-vector in C n' we finaUy 
conclude that (E1E2 ••• E") (E I E2 .,. E") == (E 12 ••• ")2 ± 1. 
We shall concentrate exclusively on Clifford algebras 
for which (E12 ... ")2 = - 1; hence, the name unit pseudo-
scalar for EI2 ... ". This means that the (flat) metric 
tensors G,,", Il, v= 1, ... , n of the V" must follow the 
rule: 

k=0,1,2,3 ... , 

and 

(Gll)(G22)"'(G"")=-1 if n=4k or(4k+1), 

k=O, 1,2,3, .... 

One can easily verify this statement by referring to 
Ref. 10. According to these speCifications, some of the 
Simplest Clifford algebras are the complex numbers 
(underlying vector space is VI with metric - 1), the 
algebra of quarternions (- 1, - 1), the Pauli algebra 
(+ 1, + 1, + 1), and the Dirac algebra (+ 1, -1, -1, -1). 
Also note that the C2 algebra of V2 (whose metric struc
ture is (+ 1, + 1» is admissible, as well as the C3 
algebra of V3 (with the metric structure (+ 1, -1, -1» 
and the C4 algebra of V4 (with metric (- 1, + 1, + 1, + 1». 

A basis {E} for C" is now formed from all possible 
unit r-vectors (r=O, ... ,n). One easily finds that there 
are 2" of them so that C" is a 2"-dimensional vector 
space. Finally, we mention that the subset of C" con
sisting of all even r-vectors constitutes a subalgebra 
C~ which can be identified with C n-1' This identification 
can be extended to a mapping between C" and Cn-I' 11 

III. CLIFFORD SUPERFIELDS 

As a vector space C" needs, besides the operation of 
addition, a field of scalars for its complete specifica
tion. Consider now an irreducible set Ci of ordinary 
(relativistic) quantum field operators acting on a Hilbert 
space of states H. We assume that this set is defined in 
some sense. In particular, the only features of the field 
operators which are of direct interest to us are their 
ISL(2, C) transformation properties [we assume that the 
ISL(2, C) group has an irreducible unitary representation 
U(a,A) in Hl and a multiplication rule between them 
(defined, possibly, via distributions). To define a super
field, we regard the irreducible set of field operators as 
the set of scalars over which our Clifford algebra is 
defined. Thus, a superfield in C" has the expansion 

2n 

4>(X) = L CPF(x)EF 
F=l 

(3) 

where the cP F(X) being to Ci (some of them could be zero). 
We shall call 4>(x) a pure superfield if aU the cP lx) have 
the same ISL(2, C) transformation properties (say, they 
are all scalar fields), whereas 4>(x) will be called a 
complex- or mixed-superfield if the set {cp ,ex)} in (3) 
contains field operators with different ISL(2, C) proper
ties. We shall restrict our attention exclusively to 
scalar and spin-! Majorana field operators. 12 

Our purpose is to employ the Clifford algebraic 
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fralllell'ork ill order to exlracl facts concerning the 
(IJasic) field operators entering the super field expansion. 
We are not interested, at this point, in a theory of 
superfields per se. 

The Central concept on which we shall be basing our 
conclusions is that of a scalar product in C" This 
scalar product is defined to be a Clifford and 15L(2, C) 
scalar at the same time. A scalar product will be viewed 
by us as a (Clifford) invariant. We shall propose that 
Lagrangian expressions for the field operators entering 
a given superfield expansion are to be constructed from 
such invariants. Furthermore, we shall call any trans
formation which leaves this scalar product unaffected 
a general superfield transformation. 

Before we can specify the manner in which such a 
scalar product is to be formed, we must introduce the 
first of the tools we employ in our formalism. An 
operation which takes the basis {E,,} into a new per
mutted one P{E,,} along with several (specified for each 
case) sign reversals is called a Clifford conjugation 
operation. A conjugation operation in C, (omit "Clifford" 
in front) is a Clifford conjugation accompanied by the 
replacement of field operators by their 15L(2, C) con
jugates. 13 We denote by 4>(x) the conjugate of a super
field <I>(x). The scalar product (X, <1» of two superfields 
X and <I> is defined by 

(4) 

where 5 stands for the O-vector component and L for that 
part of this component which is an 15L(2, C) scalar. The 
prescription, in other words, is to Clifford multiply <I> 
with the conjugate of X and keep only the ISL(2, C)-scalar 
part in front of the Clifford O-vector in the resulting 
expression. 

The second important tool entering our scheme is a 
Lorentz covariant super field derivative. Its construc
tion is prompted by the fact that any field operator rp(x) 
is always defined on points x in spacetime. Accordingly, 
the only kind of derivatives one can form is acp(x)/ax", 
Il = 0, ... ,3. These are directional derivatives which 
alter the 15L(2, C) behavior of cp(x) [e. g., if cp(x) is a 
scalar field, then arp(x)/ax" transforms as the Ilth 
component of a vector field over the Minkowski space, 
M 3, J Weare led to proj ect a/ax" on the Il th direction 
of the tangent space to M 3• 1 • Recalling that the Dirac 
matrices y" can be thought of as providing a 4x4 matrix 
representation of an orthonormal Minkowskian base, 
we introduce a general frame by p(Y,,) where p(y,,) is 
some convenient n x n representation of an orthonormal 

TABLE I. 

C, (metric of V,l 

(1)CI , (-1) 

(2) CI' (-1) 

(3)C2 , (+1, +1) 
(E3 =E12 ) 

Superfield 

(complex Hermitian) 

1/lf (x) +i1/lf (x) 

(4- or 2-component spinor) 

1/lj' (x)Eo+ 1/lf (x)EI 

+1/Jf(x)~ +1/l;f(x)E3 
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Minkowskian base. 14 The defining relation of the p(r,,) 
is 

{p(y ,,), p(y ~)}=1),,~ (5) 

where {, } denotes an anticommutator and 1) is the 
,,~ 

Minkowski metric tensor. Projecting a/ax" on p(Y,,) we 
form the operator 

3 a 
~=L p(Y,,) -. 

,,=0 ax" 

This differential operator will not alter the 15L(2, C) 
nature of any field operator on which it is acting. 

(6) 

The Lorentz covariant derivatives 0 <I> of a superfield 
<I> replaces the field operators cp J(x) in the expansion of 
<I> by PCPJ' One can then consider <I> and 0<1> on an equal 
footing, i. e., as superfields whose components have 
identical 15L(2, C) content. 

Apart from a spin-statistics theorem, for which we 
have no proof at present but which we shall see acting in 
our formalism, we have the necessary tools to proceed 
with the generation of free massless Lagrangian ex
pressions L f for pure superfields. The rule is the 
following: 

L f =([Ci+E12 ... ,J3LJ]CP, [Ci+E12 .",,eo]<I» 

=«0. +E12 ." ,130)<1»2, 

where (Ci,13)=(1, 1) for spin-t and (Ci,J3) =(0, 1) for 
scalar pure superfields. In (7) E12 ••• " is the unit 
pseudoscalar in C,. Furthermore, if the conjugation 
operation is given in a matrix form by 

then C is diagonal for scalar and of the form 

for spin-t (Majorana) field operators entering a pure 
superfield. 

Following the prescriptions given by (7) and (8) one 

Conjugate matrix 

C -J 
(-1 -1) 

(-1 +1 -1 -1) 

(a" (/11)2 + (a" CIl2)2 

-¢i1/l. 

1/l+1/lj' +i1/Jf +i1/lf (i=vCI) 

- t ¢ji1/lj, 
]=1 

1/l1 = 1/ll' +i1/lf. 1/l2 = 1/lf +i1/lf 

(7) 

( 8) 
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can arrive at the free massless Lagrangians for well
known pure superfield models. We list the results in 
Table I. [Extensive treatment of these (pure) superfield 
models appears in Ref. 11.] 

Some comments are in order with respect to the table. 
First of all, we remark that a detailed calculation for 
the third example is given in the appendix. In the second 
example, the <p7(x), j = 1, 2, can stand for either 2- or 
4-component Majorana spinors. In both cases the result 
will be L f = -1fi1 <p where <p(x) = ~ (x) + i<pM (x) is, now, an 
arbitrary spinor. We note, in passing, that we dis
tinguish between the i in the second column of the table 
(a Clifford direction) and the i in the fourth column 
(conventional i = vCT). In connection with the third ex
ample we note that the Clifford basis (Eo, E1' E2, Ea) 
corresponds to Eo = 1, where E 1 , E2 are the I-vectors 
and Ea=EIE2 is the unit pseudoscalar. The complete 
multiplication table is given in the appendix. Finally, 
we mention that mass terms in Lagrangian expressions 
can also be treated in a similar manner, i. e., as 
scalar products in (n' but we have omitted them for 
simplicity. In particular, a mass term for the first ex
ample can arise through the Clifford invariant (m<1>, m<1». 
For the two spinorial examples above a "spin-statistics" 
stipulation is needed before a similar expression can be 
adopted for a mass term. A more extensive discussion 
on mass terms will appear in Ref. 11. 

Identifying (1 with (2 and extending this identification 
to a mapping between (1 and (2' we note the corre
spondences 1 -1, El and i - E2, Ea' We can now com
bine the two (1 superfields of the preceding table into 
a (2 superfield given by 

<1>(x) = <PI (x) + <Pf(x)E1 + <p:(x)E2 + <P2(x)Ea· 

If we reflect the difference i 2 = - 1 and E~ = + 1 into 
the conjugation matrix by taking C to be 

c~ (+1+1~1~1} 

(9) 

(10) 

it becomes straightforward to show that the application 
of (7) to superfield (9) gives 

Lf = (0 ",c,ol)2 + (O,,,c,02? -iPh, <pf + i<p:. (11) 

The Wess-Zumino free Lagrangian (for their scalar 
supermultiplet) can be arrived at, in (a' by combining 
the following two (2 superfield models: the 4-component 
spinor of the table and a 4-scalar superfield model in 
(2 with two of these fields being superfluous. The 
sense in which scalar fields are called superfluous is 
that they enter a free Lagrangian expression only 
through mass-like terms (i. e., of the form ac,02). Ac
cordingly, the equations of motion yield them equal to 
zero. It is interesting to observe that what we have 
called superfluous scalar fields appear within our 
formalism as spinor-like objects. 15 Explicitly, they 
enter (7) with (a,J3)=(I, 1) and their conjugation matrix 
is of the off-diagonal form. The details of derivations, 
along these lines, of the Wess and Zumino free 
Lagrangian, as well as free Lagrangians for the other 
superfields mentioned, are given elsewhere. 11 
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IV. ON GAUGE FIELDS 

There is a variety of transformations for each Cn 
case which leaves the scalar product (4) invariant, 
phase transformations in particular. ConSider, in this 
connection, the superfield <1>(x) = <PI (x) + ic,02(X) in C l' An 
infinitesimal phase transformation localized in space 
time 

<1> - <1>' = exp[iE(x)]<1>(x) = <1>(x) + iE(X)c,ol (x) - dX)<P2(X) 

(12) 
implies 

j) <1> - f) <1>' = j)<1> + i€(x) ?<Pl - €(x) ?<P2 + ¢,E(X)(<P1i - Cf!2)' (13) 

In order to have a truly covariant derivative li. e., one 
transforming like <1>(x)] under such phase transforma
tions, the last term on the right-hand side must vanish. 
For this purpose, we make the replacement 

¢' - ¢' - e/>., (14) 
where 

( 15) 

p(Y",) being a lxl representation of an orthonormal 
Minkowskian frame (recall previous discussion). If we 
require that A", transform according to 

( 16) 

then we easily find that the last term in (13) vanishes. 
Consequently, f)<1> transforms like <1>. 

A more interesting transformation with spacetime de
pendent parameters can be introduced in connection with 
the C2 model given by Eq. (9). Consider the infinitesi
mal spino rial transformation 16 of the subspace 
<pf El + <P: E2 given by 

<p~ El + <P: E2 - exp(CiM (x)E1) (if/f El + <14 E2) = <pf E1 + <p~ E2 

+ aM<pf + (iMJ4Ea 

where ~, <14, and aM are 2-component (Majorana) 
spinors. Then, 

<1> (x) - <1>(x)' = <1>(x) + (iM<pf + (iM<p:. 

On the other hand, 

(17) 

(18) 

f) <1> (x)-f)<1>(x)'= f) <1> (x) + (iM¢'<fJf + (iM¢'1/f!zE 3 + ¢'liM (<fJf + <14 E 3 )· 

We suggest the following substitution; 

¢' - ¢' - [2JWir 

where vv is a scalar Hermitian field formed by the 
spinor v(x) and its conjugate. Furthermore, 

~=(vp(y",)v)p(Y"') 

(19) 

(20) 

(21) 

with p(y,J being 2 x 2 representations of a Minkowsian 
orthonormal frame. 17 

Obviously, fottf should transform by 

(22) 

where (aMtl is actually a column spinor which satisfies 

(23) 
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It easily follows from the substitution (20) that the last 
term in (19) will vanish and j) iI> will transform as iI>. 
One can deduce individual transformation properties of 
the v' s which combine to give (22) (to the 1st order). We 
intend to look into these matters in more detail else
where. 

Now, the spinor v(x), which we take to be of dimen
sion -±. can be thought of as a fermion (spin-±) "gauge 
field". The substitution (20), when inserted into (11), 
gives rise to the (interaction) term Z2Zip(y,,)v~p(y,,),P. We 
suggest that the coupling constant Z2 is dimensionless by 
taking lvJ=-±. [0]=-3/2. One could say that the 
fermion "gauge field" stands (in dimension) with respect 
to the observable spinor as the photon field A" stands to 
the observable F "V' This, of course, is not a new idea. 
It has been pursued in the past by Dlirr and Winter 18 

along different lines. Actually, these authors have con
sidered all spinors entering a theory as having dimen
sion-±. Here, we distinguish between "gauge spinors" 
and "matter spinors. " 

Our example has been restricted to the 2-component 
spinorial case and is probably not the most general. 
Hopefully, arguments along parallel lines can lead to 
similar conclusions in connection with a 4-component 
"gauge spinor. " Added difficulties in-this case could 
arise with respect to chiral projections. 

V. CONCLUSIONS 
We have described a formalism which seems capable 

of yielding (Clifford) invariant expressions (Lagrangians) 
that cover a wide spectrum of field theoretical models. 
This formalism can be used to describe both pure and 
mixed superfields. The present scheme also seems to 
provide a rich body of transformations which leave our 
scalar products invariant. Finally, it is capable of in
trodUCing gauge fields in a simple straightforward man
ner. Detailed procedures and calculations concerning 
the aforementioned matters are subjects of forthcoming 
papers. 

On the other hand, it must be pOinted out that the 
Clifford algebraic structure, as we have presented it, 
remains largely a formalism. PhYSical background will 
begin to crystallize only after much more work has been 
done. We want to suggest some of the wide open prob
lems whose clarification should have a lot to say about 
the foundations (or lack of them) of our approach. 

(a) A complete justification of the various mathemati
cal objects which enter the scheme is of essential im
portance. In particular, our crude geometrical inter
pretations need refinement. 

(b) Investigations as to whether the Hilbert space of 
states can be split in a way similar to the one we have 
used to expand superfields would be extremely useful. 
If, indeed, this could be done, a much closer relation
ship than has been implied would exist between the 
Hilbert space of states and the superfields. 

(c) A classification of the general superfield trans
formations for each given superfield model is of utmost 
importance. This is a huge task. To appreciate what is 
involved here, just consider the case of the C 1 super
field given by iI>(x) = CfJ1 (x) + iCfJ2(x). In Fig. 1 we place, 
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on the complex plane (=C1)' the product lil> whose real 
part gives (X, iI». Any transformation which takes Xii> 
somewhere on the line L is a general superfield trans
formation. A phase transformation, in particular, 
leaves Xii> where it is. 

(d) A formulation and proof of a spin-statistics 
theorem, which seems to be acting in our scheme, is 
essential. 

(e) The generation of mass and/or interaction 
Lagrangian terms is, of course, vital. In principle, 
they should enter through invariants like (m iI>, mil», 
Ui il>iI>, Ii il>iI», but it could be that some complications 
are involved, especially when it comes to mixed super
fields. 

(f) The Lorentz content of our formalism is to be 
found in our definition of a scalar product. We can af
ford to adopt this attitude for the moment. On the other 
hand, should the enquiries in connection with (b) give 
positive answers, we would have to think more seriously 
about the Lorentz transformation properties of Clifford 
directions. In Ref. 11 we consider this question in more 
detail. 

It is hoped that our suggestion that Clifford algebras 
can provide a framework for the description of super
fields can be taken seriously. Investigations along the 
lines set by this paper are at present in progress. 
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APPENDIX 

We shall show, in this appendix, how our formula (7) 
leads to the Lagrangian for a pure spino rial superfield 
in C 2' The superfie ld expansion is 

where (Eo, E 1 , E 2 , E 3 ) forms a base for C 2 (Eo = 1 and 
E3 is the unit pseudoscalar). The multiplication table 
is the following: 

I 
I 

• XfP 
I 

........ 
I (X fP) 
I 
I 
I 

L 

FIG. 1. Illustration of the domain of general superfield trans
formations inC!. 
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Eo E1 E2 E3 

Eo Eo E1 E2 E3 

E1 E1 Eo E3 E2 

E2 E2 -E3 Eo -E1 

E3 E3 -E2 E1 -Eo 

The adjoint of W(x) is given, according to our 
specifications of Sec. III, by 

;{, = - ~~(X)E3 - ~~(X)E2 + /k(x)E1 - ~(x)Eo' 
Finally, we need f) w and f)~. They are given by 

f) >It = ~l/!~Eo + ~~El + ~1/4E2 + ~l/!~E3 

and 

f)>It= - ~l/!~E3 - ~l/!~E2 + ~l/!:El - ~~Eo' 

(A2) 

(A3) 

(A4) 

We recall that the >p1, j = 1, ... ,4, are Majorana spinors 
Accordingly, we can use the Majorana properties 1 

(A5) 

Following formula (7) we must now form 

\{I + E~>It = (iJ!~ - ~iJ!~)Eo + (iJ!~ + ~iJ!:)El + (iJ!: - ~iJ!~)E2 

+ (iJ!~ + ~ <tI!)E3 (A6) 

and ------ , (>It + E3f)\Jr) = - (~~ - ~~)E3 - (~~ + 1"~:)E2 + UP: - ~~~)El 

-(Iii~+~iJ!~)Eo, (A7) 

so that 

--------Lf = [(>It + E~>It)(>It+ E3D>It)]S_L 

= -1jj~<tI! + ~~iJ!~- ~~iJ!r - r~~iJ!~ + ljj:iJ!~ + ljj:~iJ!: 

- r~iJ!: - ~~iJ!: -ljjN: + ljj:~iJ!: - ~ljj:~ 

+ ~~:~iJ!2M+ ~~iJ!~ + ~~~ - ~~iJ!r - ~~r~iJ!r. (AB) 

Note that~e only kept the Eo part of the Clifford 
product (>It + E~ >It)(>It + E~ >It) in accordance with our 
definition of L r Using the Majorana properties (A5) 
we get cancellations leading to 

(A9) 

Recall, now, from the conventional Dirac theory that we 
can take 

ljj=(iJ!iiJ!~ iJ!~iJ!tryo' 

Writing 

iJ!",=(iJ!1+i</J2)"" 0!=1, ... ,4, 

(A10) 

(All) 

we obtain for the ordinary Dirac Lagrangian (omitting 
factors in front which are inessential to our argument) 

L = -:]¥iJ! = (iJ!1 - i 'l!2) j"Als( iJ!1 + i02)s, (A12) 

where 

[M",s = (1'01'" )",s a;,. (A13) 

It is not hard to see that the imaginary parts of (A12) 
vanish: 

i[>P1",A",s'l!2S - W1",A aJl lji2S - O2 ",.1",s >P1S+ lji2a AaJl W1S]=O. 
(AI4) 
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Indeed, since (1'01',,) is symmetric and since the tjJ's 
anticommute, we have, e. g. , 

(A15) 

which shows that the second and third terms in (AI4) 
cancel. Similar arguments hold for the first and fourth 
terms. We are finally left with just the real contributions 
in (AI2). Explicitly, - -

L = 0~lji= Jj1~iJ!1 + Jj2~lji2' (AI6) 

Returning to our Clifford algebraic result, 

Lf = - ~r~iJ!r -~: ~iJ!: -~: ~lji: - ~~~lji~, (AI7) 

we can group together, e. g., ljir and lji~, into an ar
bitrary (i. e., not necessarily Majorana) spinor </J by 

iJ!=lji~+ilji~. (AlB) 

Similarly for iJ!: + iiJ!:: 

zp' = iJ!r + izpf· (AI9) 

We then have as a final answer 

L f= - Jj~lji - Jj'~zp', (A20) 

which is the expression quoted in the table of Sec. III. 

Finally, we remark that in (AlB) and (AI9) the i 
stands for vCT rather than the unit pseudoscalar in C l' 

lAbdus Salam and J. Strathdee, Nucl. Phys. B 76, 477 (1974). 
2C. Fronsdal, ICTP, Trieste, Preprint IC/74/21. 
3J. Wess and B. Zumino, Nucl. Phys. B 70, 39 0.974). 
4J. Wess and B.Zumino, Phys. Lett. 49B, 52 (1974); J. 
Iliopoulos and B. Zumino, Nucl. Phys. B 76, 310 (1974); J. 
Wess and B. Zumino, ibid. 78, 1 (1974); S. Ferrara, J. Wess 
and B. Zumino, Phys. Lett. 51B, 239 (1974). 

5At least in the sense that qp (x)e", is a Lorentz scalar when 
'P",(x) is an ordinary Majorana spinor field. 

BAbdus Salam and J. Strathdee, Nucl. Phys. B 80,499 (1974). 
70ne immediate implication we must point out is that the 
Clifford algebraic approach, from our point of view at least, 
does not exclusively aim to accommodate supergauges. If this 
was our sole purpose it is doubtful that Clifford algebras 
would be more successful than the Salam and Strathdee ap
proach to superfields. In this connection, let us also mention 
that an attractive feature of expansion (1) that we are, natu
rally, giving up is the presence of the internal variables e", 
which bear some similaritv to twistors. In the latter formal
ism, however, spacetime points playa secondary role, 
whereas in (1) they seem to be taken on equal footing with the 
e's. 

8n. Hestenes, Spacetime Algebra (Gordon and Breach, New 
York, 1966). 

9We stick to the nomenclature of Ref. 8 even though it would 
be more appropriate to call the corresponding objects 
r-forms. 

IOThe Clifford product between an r-vector (Vj ~ v2' •• ~ vr ) 
and an s-vector (Itt" Zbz' •• II us) (say, r < s) is given by 
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where e- tl =p~m. Finally, [(1'1 II··· "v.)· (ul"··· flu)] 
is a number given by 

l'S "Ut ...... lis· "s 
det 

1'1 -Ill ..... "1 • u~ 

IIC. N. Ktorides, ICTP, Trieste, Preprint IC/75/47 (1975), 
submitted -for publication. 

l~\Ve need Majorana spinor components in superfield expan
sions because the property !PI/!' = iP'l/! is essential to our proofs. 

13By conjugate to a field operator <{laB ... (X) we mean a field 
operator ,p,,8 ••• (x) such that qia8·"(x)<{Ia8 ••• (x) is an ISL(2,C) 
Hermitian scalar field. 

IlFor examples of such representations, see, E.M. Corson, 
II/troduction to Tensors, Spinors and Relativistic Wave EqUQ
lions (Blackie, London, 1953). In particular, a 2 x2 repre
sentation is mentioned on p. 163; representations of higher 
dimensionality (given by Kemmer) are exhibited as well 
(PP. 181, 182). 

15This observation strengthens our feeling that a spin-statistics 

2129 J. Math. Phys., Vol. 16, No. 10, October 1975 

theorem is present in our formalism. In particular, the 
vanishing of the superfluous scalar fields could be considered 
as a consequence of the fact that these fields obey the wrong 
statistics. 

ISlt can be shown that transformation (17) leaves (7) invariant, 
given a certain condition imposed on the ti!, j = I, 2. We as
sume that the corresponding action on ~ (xj [using the conju
gation matrix given by (10)) is given by 

I7Since we have not been systematic, by any means, in intro
ducing (rlI), we make no firm commitments as to the nature 
of this object, i.e., whether it represents a bound state or 
not. We intend to investigate the question of fermion "gauge 
field" more thoroughly in the future. Here, we merely want 
to present an illustration of the possibility of introducing such 
an object within the framework of our formalism. 

IBJI.p. Durr and N.J. Winter, Nuovo Cimento A 70,467 
(1970); Nuovo Cimento A 7, 461 (197'2). 
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A non-Lie algebraic framework and its possible merits for 
symmetry descriptions 

C. N. Ktorides 

International Centre for Theoretical Physics. Trieste. Italy 
(Received 25 November 1974; final revision received 13 February 1975) 

A nonassociative algebraic construction is introduced which bears a relation to a Lie algebra L paralleling 
the relation between an associative enveloping algebra and L. The key ingredient of this algebraic 
construction is the presence of two parameters which relate it to the enveloping algebra of L. The analog 
of the Poincare-Birkhoff-Witt theorem is proved for the new algebra. Possibilities of physical relevance 
are also considered. It is noted that. if fully developed. the mathematical framework suggested by this new 
algebra should be non-Lie. Subsequently. a certain scheme resulting from specific considerations connected 
with this (non-Lie) algebraic structure is found to bear striking resemblance to a recent phenomenological 
theory proposed for explaining CP violation by the K 0 system. Some relevant speculations are also made in 
view of certain recent trends of thought in elementary particle physics. Finally. in an appendix. a Gell-Mann
Okubo-like mass formula for the new algebra is derived for an S U(3) octet. 

I. INTRODUCTION 

The effectiveness of Lie algebras in theoretical phy
sics must be considered, by now, as established. 
Nevertheless, with the deepening of our understanding 
of problems like symmetry breaking, discrete space
time symmetry violations, etc., the need for a more 
effective algebraic structure emerges as a plausible 
alternative. Of course, if one were to adopt such an 
attitude one should not lose sight of the vast and nu
merous successes of Lie algebras (and groups) in con
nection with elementary particles. In this regard, one 
may recall the so-called Jordan algebras introduced as 
far back as 1934 by Jordan, von Neumann, and Wigner 1 

defined by the identities 

ab = ba, (1. la) 

(LIb) 

where the algebraic product has been denoted by simply 
placing two elements next to each other. (Perhaps a 
more familiar representation of the Jordan product is 
{a, b}. 2) Despite several attempts, the question of pos
sible physical usefulness, either of Jordan algebras or 
various generalizations of them, remains open at this 
time with no clear-cut application surfacing so far. Ac
cordingly, it makes more sense that any alternative 
algebraic structure put forth for improving the status 
quo should have a Lie content in some way or other. 

In this respect, the Santilli algebras, 3 proposed in 
more recent times, seem to be more promising. The 
important aspect of the Santilli algebras is Lie 
admissibility, a concept which goes back to Albert. 4 

Briefly, an algebra A is Lie admissible if its product 
can be utilized, via a commutator, to introduce a new 
product satisfying the Lie properties. Throughout this 
paper we adopt the Lie admissibility in Santilli's sense. 
It is specified as follows. Given an algebra A (product 
ab) denote [a, b, c] = (ab)c - a(bc), the so-called as
sociator. Santilli's Lie admissible algebras are defined 
by the re lations 

[a,b,a]=O 

la,b,c]+[b,c,a]+[c,a,bl=O. 

(1. 2a) 

(1. 2b) 
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Note that the latter is a generalization of the Jacobi 
identity. 

The first realization of the adopted Lie admissibility 
axioms has been given by Santilli and Soliani. 5 It can be 
viewed as a combination of Lie and Jordan algebras 
with two parameters entering. These parameters ex
press the mixing between the two algebras. Explicitly, 
consider an associative algebra A whose product we 
denote by placing two elements next to each other. It is 
well known that the associative product can be used to 
define the Lie algebra A L of A. Thus, A L has the same 
elements as A but the product in the former is specified 
by 

[a,b]=ab-ba. (1. 3) 

The Santilli-Soliani algebra A(A, J..I.) is introduced by 
considering a different generalization of A. In particu
lar, let A(A, J..I.) be the same vector space as A but with 
the product defined via 

(ab) = Aab + J..I.ba. (1. 4) 

The algebra A(A, J..I.) so defined has been called the (A, J..I.) 
mutation of A, mutation algebra for short. Obviously, 
the word mutation characterizes the flexibility one now 
has due to the adjustability of parameters X and J..I.. Note 
that (1. 4) can be rewritten as 

X- J..I. A+ J.J. 
(ab) = -2 - (ab - ba) + -2 - (ab + ba), (1. 5) 

which illustrates the mixing of the Lie and Jordan 
algebra products. One sees right away that algebra 
A(A, J.J.) satisfies an "asymptotic condition" in the sense 
that it reduces directly into a Lie algebra (i. e., A L ) as 
A - + 1, J.J. - - 1. It can be shown very easily that A(X, J.J.) 
is Lie admissible. The transition from a Lie algebra 
L to the more general (Lie admissible) algebraic struc
ture does not entail, of course, the complete abandon
ment of the Lie framework. We can, in fact, say quite 
generally [i. e., irrespective of the particular replace
ment AL -A(A, J..I.)] that the replacement of L with any 
Lie admissible algebra U simply implies the embedding 
of the Lie into the new framework-or the other way 
round-with L being identified with U L' Another in-
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teresting feature of the Santilli algebras is that they 
admit a general analytic formulation whose bracket co
incides with product (1. 5). Thus, they might be attrac
tive as a methodological tool for investigating inter
polating fields. 

Some initial applications of algebras A(A, jJ.) have 
been investigated in problems such as 6: SU(3) symmetry 
breaking and mass formulas in A(A, jJ.) [with AL(A, jJ.) 
zSU(3)j, classical dissipative systems, plasma in
stabilities, and quantum mechanical interpolating fields. 

In our construction we start from a Lie algebra L. In 
particular, our original product is the Lie product, i. e. , 
we have no associative algebra to begin with. It is well 
known that one can construct at least one associative 
algebra from L, namely the universal enveloping alge
bra A of L. This algebra could now be used to define a 
Lie algebra A L or a mutation algebra A(A, jJ.) via rela
tions (1. 3) and (1. 4), respectively. A common feature 
of A, A L' and A(A, jJ.) is that they are identical as vec
tor spaces; only their products are different. We also 
recall 7 that L is homomorphic, but not isomorphic, to 
A L; i. e., not every element of A L corresponds to an 
element of L- Consequently, it is not L but A L which 
coincides with A(l, - 1). 

Our present (A, jJ.) generalization is slightly different 
from the above and is introduced at the level of the 
tensor product which plays a vital role in the construc
tion of enveloping algebras. The (enveloping) algebra to 
be constructed will be called by us the universal en
veloping mutation algebra (UEMA) of L. In particular, 
we shall introduce 

a0'b=\a0 b +jJ.b0a, a,br=:L· (1. 6) 

Now, (1. 6) does not actually give the UEMA product it
self. In fact, the UEMA of L [to be denoted by (l(A, jJ.)] 
is formed as a quotient space of the tensor algebra 
whose product is 0'. The point is that (1. 6) helps turn 
(l(A, jJ.) into a Lie admissible algebra in Santilli's sense. 
Thus, we presume that we have here a new realization 
of identities (1. 2a, b) for a Lie admissible algebra which 
constitutes a true nonassociative enveloping algebra of 
a Lie algebra. Conceivably, this property might rep
resent a significant contribution for possible phYSical 
applications of algebras defined by the aforementioned 
Lie admissibility identities. Furthermore, while alge
bras A(A, jJ.) were investigated for the limit 

A(A, jJ.) - L, 
~ ... +1 

we are now lead to focus our attention on the other 
significant limit 

where A is the (associative) enveloping algebra of L. 

We shall devote Sec. II to the construction of a UEMA 
of a Lie algebra as well as the derivation of some of its 
properties. One central part of this section will be the 
proof of the analog to the powerful Poincar~-Birkhoff
Witt theorem for a UEMA known, until now, for a uni
versal enveloping algebra of a Lie algebra only. 

We should also mention some physical motivations 
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for our work. It is actually hard to be concrete and 
specific on this point, since our main concern right now 
are introductory mathematical properties of the UEMA. 
One could speculate, on the other hand, as to the kind 
of uses one can make of two free parameters one has in 
possession. For example, if one was to give up the idea 
of Lie groups as forming a certain nucleus for physical 
descriptions, the possibility opens that a "Lie" asym
metry is some other (non-Lie) group's (or algebra's) 
symmetry. In this sense, the (l(A, jJ.) could be used, 
e. g., to write invariant [from the (l(A, jJ.) point of view] 
Lagrangian expressions which exhibit Lie asymmetrical 
terms parametrized through \ and jJ.. It must be ad
mitted, however, that such an alternative is far frqm 
obvious at this point since one lacks the parallel of the 
Lie group that goes with a UEMA. After all, it is the 
representations of the group which really matter in 
constructing invariant Lagrangian expressions. We shall 
deal with such problems in Sec. III. In particular, we 
shall exhibit a possible connection between a certain 
(l(A, jJ.)-invariance scheme and a superweak phe
nomenological Lagrangian formulation suggested recent
ly by Hsu 8 to account for CP violation by the ~ system. 

It is needless to emphasise that our understanding of 
questions revolving around physical applications is still 
rudimentary. Much more work is necessary before one 
can talk with confidence about the importance of Lie 
algebraic generalizations of the sort we are presently 
introducing. Some speculations along lines concerning 
relevance to physics are made in Sec. IV. 

In the appendix we present another possible applica
tion of a UEMA along more orthodox lines. By restric
ting L to SU(3) we subsequently derive, within the 
framework of its UEMA, a Gell-Mann-Okubo-like mass 
formula which contains the parameters \ and jJ. in a way 
similar, but not equivalent, to the previous derivation 
in the framework of algebras A(A, jJ.). 6 

II. UNIVERSAL ENVELOPING MUTATION 
ALGEBRA OF A LIE ALGEBRA 

A. Construction and elementary properties 

Throughout this section and the rest of the paper, the 
term "algebra" stands for associative algebra with an 
identity element. At times, however, we shall use the 
adjective "associative" for emphaSis. On the other hand, 
a nonassociative algebra should read as "not necessarily 
associative. " Obviously, we are committed to use the 
adjective "nonassociative" whenever we are referring to 
a not necessarily associative algebra which lacks any 
other kind of characterization. A similar comment 
holds for the "Lie" characterization of an algebra
whenever it applies. 

Suppose we are given an algebra A whose product is 
formally denoted by placing two elements of A next to 
each other. We can always form the Lie algebra A L of 
A by introduciqg the Lie product [a, b] == ab - ba, a, b r=:A 
or A L' From now on the Lie algebra of an (associative) 
algebra will be denoted by the subscript L. 

Let us recall the definition of the universal enve loping 
algebra A of a Lie algebra L through its construction. 9 
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An abstract definition can be given as well; however, it 
holds true that any two universal enveloping algebras of 
L must be isomorphic. 10 Consequently, the definition 
by construction is perfectly general. To construct the 
universal (associative) enveloping algebra for a Lie 
algebra L, one first forms the (associative) tensor 
algebra of L, 

(2.1) 

where F is the field of scalars over which L is defined 
as a vector space. Next, one considers the ideal P, 
spanned by all elements of the form 

[lll2] -l10l2 + l20lv ll' l2 E L, (2.2) 

and [lll2] denotes the Lie product. Finally, the algebra 
A formed by the quotient A'" TIP, can be shown (or, 
alternatively, can be defined) to be the (associative) uni
versal enveloping algebra of L. 

Suppose now that we form a different kind of a tensor 
algebra T'(L), which is not even associative, by the 
replacement 0 -0' where 

l10 'l2 = \l10 l2 + )1.l20l1' \,)1. E F. (2.3) 

Explicitly, 

(2.4) 

As mentioned before, T'( L) is not associative. One can 
easily verify that fact by observing, e. g., that 
(lI0'l2)0' 13 is not necessarily identical with 
lI 0 '{l2 0 'l3)' 1jEL, j=1,2,3. Furthermore, it follows 
from (2.3) that T'{L) is a subspace of T{L ). 

Consider now the subspace P" of 1'( L) which is 
spanned by all elements of the form 

(2.5) 

P" is an ideal in T' (L) under the 0' product. Indeed, 
consider the mapping T(L) - T' (L) according to which 
L - Land 0 - 0'. Then P, - P" and A 0 P, - A' 0' P" 
where the difference between A and A' is the following. 
IfA=:a1 0···0a., ajEL, j=l, ... ,n, then 
A' =: a1 0' ... 0' a •. 11 But since !~ is an ideal in T( [), then 
A0 P, c;;: p,. It follows that A' 0' P, 'e p, I and, therefore 
[since for every A' in T'{L) there exists its pre-image 
A in T(L)], p" is an ideal of T'{O. 

We can now form the quotient 

U(\,)J.)= T'(L)Ip,'. (2.6) 

U(\,)J.) is a nonassociative algebra. Indeed, let 
A, B, C E U(\, )J.). Explicitly, A =:a + p", B = b + p", 
C =c + p", a, b, C E T(O. Denote the product in 
U (A,)J.) by x. Now, 

(A XB)XC = (a0'b)0' C + p" =A2a0 b0 C + )J.A(b0 a0 C 

whereas 

AX{BXC)=A2 a0 b0 C + )J.\{a0 C0 b + b0 C0 a) 

+)J.2c0 b0a+p,'. 

(2.7) 

(2,8) 

The fact that (j (\, )J.) is nonassociative means that 
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when we write, e. g., AXBXC we do not have a uniquely 
defined element. Since both (A x B) x C and A x (B XC) 
belong to U{\,)J.), the expression AXBxC will stand for 
either one of the above two elements whenever no con
fusion can arise. Later on, however, we shall find it 
necessary to be specific as to how an expression like, 
e. g., AXBxCXD '" is meant to be organized. It also 
follows from its definition that U( A, )1.) is a subset of /I; 
we can think of U(A, )J.) as the restriction of A to a 
hyperplane parametrized by >c and )1., 

We next prove the following. 

Lemma 2.1: lj(\,)1.) is Lie admissible. 

Proof: We form U L(\')J.) from U(\, J..L) as follows: The 
elements of U L{A, J..L) are the same as those of U(\, )J.), 
The operation in U L(A, Il) is denoted by [A, B] and is 
speCified by [A,B]=:AXB-BxA. 

It is evident that U L{\' Il) is a vector space over F 
with the Lie product [ , ] being distributive over addition 
and a[A,B]= [(aA),B]=[A, (aB)], aEF, so that, to 
begin with, U L{A, )J.) is an algebra. 

Now, A=:a+p,', B=:b+P,', a,bE T'(L). It follows 
that 

AXB=:a0'b+p"=\a0 b +llb0 a +P" (2.9) 

and 

BXA=\b0a+)J.a0b+p,'. (2.10) 

So that 

[A, B)= (A - )J.)(a0 b - b0 a) + p". (2.11) 

One can now verify the Jacobi identity explicitly or 
recognize from (2.12) that one basically has a Lie pro
duct definition ariSing from an associative algebra. 
[Recall that T(L), with multiplication 0, is associative. ] 
It is also trivially evident that [A, A] = 0 since p, , is the 
zero element of U L(\' Il). 

Note that if It, 12 E L, then 

(2. 12) 

is the corresponding product in U L(>C' IJ.). There exists, 
now, a homomorphism between Land U L(A,)J.) ac
cording to which (1 112 ) goes over to [L1> L 2 ). Indeed, it 
is no different a fact to establish than the homomorphism 
between L and the Lie algebra A L of the universal en
veloping algebra of L. The latter is a homomorphism 
which takes [1 112] to 11012 -l20 11 + p" where p" we re
call, is an ideal in T( L). Similar arguments would hold 
for (2,12), In particular, it is very simple to show that, 
in our case of interest, the Jacobi identity [[z112)13] 
+ [[l2l3]11] + [[1 311)12] = 0 goes into the zero element 
(i. e. P") of U L(A, Il). 

The Lie admissible algebra UtA, IJ.) so constructed 
will be called by us a universal enveloping mutation 
algebra (UEMA) for L. The reasoning behind the word 
"mutation" is that one can think of utA, )J.) as changing 
according to the parameters \ and )1., In particular, if 
A is the universal enveloping algebra for L, it follows 
that 

(2.13) 
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B. The analog of the Poincare-Birkhoff-Witt theorem 
for a UEMA 

The Poincart!-Birkhoff-Witt theorem (PBW for 
brevity). is of great significance in connection with uni
versal enveloping algebras. From the point of view of 
physics, it constitutes the underlying mathematical re
sult on which the derivation of the well-known Gell
Mann-Okubo mass formula rests. 

The motivations behind this theorem are related to 
the desire to order the tensor product expansions of 
T(L). For example, let e1 , ••• , en be an ordered basis 
for L and consider L 181 L. Of course, both e1181e2 and 
e2181e1 belong to L 181 L. On the other hand, when one views 
L 181 L as part of the tensor algebra T(fJ, one wants to have 
available a basis for L 181 L possessing a certain order. 
The desired ordering hinges on the way in which the e / s 
enter the basis elements e il8l ek (j, k = 1, ... ,n) of 
L 1& L. Suppose, in particular, that we want the indices 
to increase on the right only, i. e., the basis for L 181 L 
to be constituted by elements of the form eil8l ek with 
j "" k exclusively. One must ascertain that the elements 
of the form ei l8l ek with k<j are also covered by such a 
basis. 

We call standard any monomial eil181 ···181 eik (degree k) 
for which the indices strictly appear in an increaSing 
order from right to left, i. e., js "" j~ if s "" r. Let us 
note that 

(2. 14) 

It follows that 

+ e. 181·· ·181[ e e ] 181···181 ei L mod D. 
31 is is+l • 1\ 

(2.15) 

In other words, a given monomial can be expressed as 
a sum of a monomial of the same degree with two mem
bers of the product exchanged and a monomial of 1 
degree less (mod/<.). This procedure can be applied 
successively in order to express a monomial with index 
i > 0 in terms of a standard monomial of the same degree 
plus a number of monomials each one of 1 degree less. 
The latter monomials, if not standard, can again be 
brought into standard form plus monomials of 2 degrees 
less than that of the original. In conclusion, every 
element of T(L) can be expressed as an F-linear com
bination of 1 and standard monomials (mod /<. ). 

Finally, the existence of a mapping 12 0': T( L> - A 
such that 0'( 1) = 1 0'( e 181 .00 181 e ) = E E ••• E if 

'il ik it i2 ik 
jl ""j2 "" ••• ""jk and 

opens the way to the PBW theorem. It asserts that the 
eosets of 1 and of standard monomials form a basis 

for A " nOI/<.. 
This powerful theorem cannot be generalized to 

U(iI., j.J.) in a straightforward manner because the hi.tter 
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is nonassociative. We are no longer in a position to 
liberally make exchanges of two members of a U(iI., j.J.) 
monomial. For example, if js > jS.l' the monomial 

(2.16) 

cannot be expressed, in a manner analogous to (2.15), 
as 

+ ( ... « .•• « ei 181' ei ) 181' ei ) ••• ) 181' [e i ei ]) ..• ) 181' ei 1 2 3 s s +1 It 

mod/<.'. (2.17) 

Before we proceed any further, we must decide what 
should constitute a standard monomial with respect to 
the operation 181' [i. e., in T'(O]. Since we have no a 
priori clues, let us be quite general and declare any 
monomial in T'(L) standard if the ordering 
jl "" j2 .,;; .• 0 .,;; j k is respected, no matter how the as
sociation is made. For example, both (e

jl
l8l' ei )I8I' ei3 

and e it 181' (e i2 181' e i) are standard with re spect to 181' , 
provided jl .,;; j2 .,;;j3. Let us subsequently drop the 
qualification "with respect to 181'" for simplicity, unless 
it is needed for clarification purposes. 

Getting back to (2.16) now, we realize that the ex
change between e i. and e is.l could have taken place along 
the lines of (2. 15) if, instead, we had 

(2.18) 

where we omitted all other brackets (associations) in 
order to stress the fact that what is important in ex
changing e is and e i

s
.l is their being directly multiplied 

by each other. Accordingly, we are naturally led to the 
following question: What is the difference between 
{(a'I8I'e )I8I'e )I8I'b' and {a'I8I'(e l8I'e »I8I'b' where is is.l is i s.l 
a', b' EO T '(O? We deal with this question in proving the 
following. 

Lemma 2.2: The difference between the two k-degree 
monomials in T'(O «a'I8I' ei )181' ei )181' b' and 
(a' 181' (e j 181' e js. » l8I'b' (the notation salready explained) is 
a sum of (k - 2~-degree monomials in T( 0 mod /<. . 

Proof: We have previously evaluated 

N : {(a' 181' e )I8I'e )I8I'b'=[il.2a'l8I e· 181 e 
1 is is.l 3s is.l 

(2. 19) 

and 

N : (a' 181' (e l8I'e »I8I'b'=[il.2a'l8Ie l8Ie 
2 is is+! is is+l 

(2.20) 

Therefore, 

NI-N2=il.j.J.[e j l8Ia'0 ej +ej 0a'0ej -a'0ei l8Ie i 8+1 S S 8+1 8+1 S 
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(2.21) 

Or 

- e @ (e. @a' - a'@ e )]@ 'b'. 
js .15+1 Js ... l (2.22) 

Consider the term eJs+10 a' - a'@ e js+1' Now, a' has an 
expansion in T(L) since the product @' is related to @. 

We can now move e js +1 through a' to the right as already 
suggested by (2.15). Each time we move e j one s+1 
position to the right we obtain, in addition, a monomial 
of 1 degree less than the degree of the 1(L) monomials 
in the expansion of a' (modI<). When finally, e

J 
is 

s+1 
brought all the way to the right, it will cancel with 
- a'@ e js +

1
' and all that will remain will be a sum of 

T( L) monomials (modj\) of degree t - 1, where t is the 
degree of a'. Denoting this sum by the generic symbol 
c (degree of c = t - 1), we now have 

(2.23) 

Repeating the same process with e is @ c, we end up 
(mod/~) with a sum of a series of monomials of degree 
t - 2. Denoting this sum by d we have 

(2.24) 

Now b' also has an expansion in nL) in terms of 
monomials of degree k - t. Consequently, N1 - N2 is a 
sum of (not necessarily standard) monomials of degree 
k - 2 in nL) (modj\). • 

Similar arguments hold for the difference 
a'@'(e. @' (e. @'b'))-a'@'«e. @' e )@'b'). 

J s .1 5 +1 Js is +1 

When we bring a T'( L) monomial into the desirable 
form, we can then apply an argument analogous to that 
of (2.15). ConSider, again, the k degree monomial 
«a'@'e js )@' eis+) 0' b' for which js > jS+1 is true. At the 
expense of introducing a number of k - 2 - degree no 
monomials modj\, we can work with 
(a'@'(eJ.@'ej))@'b'.Itfollowsthat 

s s +1 

(2.25) 

Finally, the first term on the right-hand side can be 
brought back to the original format 
«a'@'ejs+J@' eJ)0' b' at the expense of introducing 
additional (/z - 2)-degree monomials in 1(L) modj\. 
The above arguments can be formalized into the 
following. 

Lemma 2.3: A k-degree monomial in T'(L) can be 
expressed (modj\') as an F-linear combination of 1 and 
standard T'(L ) monomials of degree <S k plus an F
linear combination of 1 and standard T(L) monomials 
(modj\) of degree <S (k - 2). 

We have, therefore, found a way to associate together 
any two members, of a given T' (L ) monomial, we wish 
to exchange. This is the crucial result necessary for 
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our present nonassociative algebraic entity before the 
analog of the PBW theorem can be extended to U(>", j.J.). 
We are, accordingly, in a position to follow the steps 
taken for the proof of the theorem in the case of the 
enveloping algebra. Unfortunately, we are forced to 
carry, in addition to monomials in T'(L ) mod!\' , 
monomials in no modj\ [of a maximum degree smaller 
by 2 than the corresponding maximum degree of the 
T'(L) monomials]. 

Consider now, an arbitrary element A' = a' + /~' of 
U(>", Il) where a' E T'(L). We have seen that a' has a 
decomposition of the form 

(2,26) 

where b~ is a sum of T'( [) standard monomials with 
maximal degree k and C k _2 is a sum of TCL) standard 
monomials of maximal degree k - 2. We are, thereby, 
led naturally to our main result which constitutes a 
generalization of the PBW theorem to UEMA. 

Theorem 2.1: An arbitrary element of 
U(>", iJ.) '" T'(L )/j\' has an F-linear expansion in terms 
of j\ , cosets of 1 and standard T'(L) monomials plus 
j\ cosets of 1 and standard T< L) monomials. The maxi
mal degree of the latter is 2 less than the maximal 
degree of the former (monomials). 

This theorem is not, obviously, as strong as the 
corresponding one for universal enveloping algebras. In 
particular, for a k-degree U('>,./ /J.) monomial [multi
plication in U (>.., /l) denoted by x] the theorem asserts 

A' xA' x .. ·xA' 
Jl J2 j k 

(2.27) 

where J' <SJ' <: '" <:]'. and ]' <: j <S .. 0 <:]' . In (2.27) 
0'1 ~ Juz Pl· P2 Pm 

AB denotes multiplication inA = T(O//~ (A, B c: A) and 
a/! (3m E: F. Finally, we mention that the particular man
ner in which the association is made in A Jl x ... xA j k is 
irrelevant, given our definition of a T'(L) standard 
monomial. It is possible, however, to sharpen our de
finition in view of the fact that any kind of association in 
the above monomial can be brought, e. g., to the form 
("'«Aj1XAj2)XAj)X.")XA; plus a number of no 
monomials of degree <S (k - 2) modj\ . 

The weakness of the above theorem may be disturbing 
at first sight. On the other hand, it is possible that 
Theorem 2. 1 could endow one with enough freedom to 
proceed towards finding "unconventional" physical ap
plications. Thus, the fact that an arbitrary element of 
our nonassociative algebra U(>.., j.J.) can be put in a form 
which contains a standard nonassociative and a standard 
associative part may prove of relevance, especially 
when one considers representations of U(>.., Il)· 

For the applications we have in mind it becomes 
necessary to possess an associative algebra A~" into 
which one can map elements of U(>.., iJ.). This becomes 
particularly important when one considers representa
tions of lj(>", j.J.) which act as transformations on a vector 
space. Hopefully, this point will be elucidated by the 
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examples in Sec. III as well as that in the appendix. In 
particular, given the U (X, /-L) product A x B (A and B may 
themselves be monomials with more than one factor), 
we want to be in a position to write 

AXB=\.A'B' + /-LB'A', (2.28) 

where A', B' are the images of A, B inA>'lL and where 
we have denoted the (associative) product inA>'lL by 
placing two of its elements next to each other. As we 
shall argue later, A AI' can be viewed as similar to the 
universal enveloping algebra A of L. More generally, 
A AI' can be thought of as an (associative) algebra of L 
monomials. We shall have further comments to make 
about A AlL later on. 

The feasibility of expression (2.28) can be shown by 
the following: 

Theorem 2. 2: There exists a mapping u: U (X, /-L) -A AlL' 
where A A" is an associative algebra of L monomials, 
such that 

o(A XB) =: Xa(A) a(B) + J.Lu(B) orA), A, B E U(X, J.L). 

(2.29) 

Proof; Consider the mapping p : T( L ) - A AlL such that 

p(a0 b) =:p(a)p(b)/(X - J.L). 

It follows that 

p([Z1121-110' 12 + 120' 11) 

= p{[Z1121- (X - J.L )110 12 + (X - J.L )12011} 

(2.30) 

= p([1112]) - P(ll) p(12) + p(12) P(ll)' (2.31) 

As we shall remark in more detail in the next section, 
whenever we are restricting our considerations on the 
Lie algebra of a Lie group we can always write 

p([1112 ]) = P(ll) p(12) - p(12) P(ll)' (2.32) 

It then follows that 

p{[1112] -110' 12 + 12 0' 11}=: O. (2. 33) 

Consequently, 

p(AXB)=: _A_ p(a)p(b) + _IJ._ p(b)p(a), 
A- J.L X- IJ. 

(2.34) 

since, if P vanishes on the generator of P"', it vanishes 
on P..' itself. Furthermore, in (2.34) we have adopted 
the notation A = a + p.. " B = b + p.. ' • 

Equation (2.34) almost guarantees that our mapping 
has been constructed. To arrive at the special form 
(2.29), which is particularly useful for the applications 
we have in mind, we define the mapping u on a utA, IJ.) 
monomial A by 

o(A)=p(A) (X - J.L)(n-ll, n= 1, 2, 3 "', (2.35) 

where n is a weight associated with A in the following 
manner: As a monomial of U(X, Ii-), A should be 
expressible in the form 

A = al x G.z x ..• x an' (2.36) 

where the ajE U(x, p.), j= 1, ... ,n, cannot be further 
reduced by utA, IJ.) products. Note that we have omitted 
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to show in the last relation the specific association in 
the (nonassociative) product which makes up A; this is 
immaterial for our purposes. The point is that n factors 
enter the expansion of A and that number is the weight 
of A. 

Now, in (2.36), the factors aJ, j = 1, ... ,n, which 
cannot be further reduced are either of the form 

ak=:lk+p..', lkEL, 

or of the form 

(2. 37a) 

(2. 37b) 

It can easily be shown, now, that the choice (2.35) is 
consistent with (2.29). Thus, let nand m be the weights 
of monomials A and B, respectively. Then, 

u(A x B) =: peA x B)(X _ Ii- )n+m-l 

=:Xp(a)p(b) (x - J.L)n+m-2 + li-p(b)p(a) (X _ J.1.)n+m-2. 

On the other hand, 

Xa(A) u(B) + Ii- o(B) utA) 

=: Xp(a)(x - Ii-) (n-l) p(b)(X - J.L) (m-l) 

+ li-p(b) (x - Ii-) (m-l) pta) (x - Ii-) (n -1) , 

where we have used the result p(A) = p( a) since p 
vanishes on p.. '. 

(2.38) 

(2.39) 

Obviously, the right-hand sides of (2. 38) and (2.39) 
are identical and the desired mapping has been con
structed. 

Several remarks are now in order. To begin with 
more trivial ones, let us make it clear that all applica
tions we have in mind involve U(X, J.1.) monomials of 
weight 2. Consequently, we shall gear all specific ex
amples onto such cases. Secondly, we want to stress 
that our restriction to monomials in the proof of 
Theorem 2.2 involves no loss of generality since any 
U(x, Ii-) element can be expressed as a sum of mono
mials. Consequently, the only complication involved is 
that one has to deal, separately, with more than one 
product between monomials. 

The nature of A AlL as an associative algebra of L 
monomials becomes evident from the mapping u in
troduced during the proof of Theorem 2,2. Thus, con
Sider, e. g., the U(X, Ii-) element A of the form 
a + p.. " a r=: L. Then, since n = 1, 

u(A)=p(A)=p(a) (2.40) 

and u(A) ( E A A") can now be associated with the Lie 
algebra element a through p. This argument can be 
extended to monomials of higher weight. Thus, e. g. , 
P(ll) p(12) in (2.32) is an A A" product of the Lie elements 
11 and 12 , Finally, for a E F we have p(a) = a, i. e., a 
becomes an A AlL scalar. 

Note, now, a subtle difference between A A" and A as 
algebras of L monomials. In the case of A, it is the 
projection mapping that associates the Lie element 1, 
say, to the enveloping element 1 + p... Thus, the as-
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sociation is always made modulo the ideal R.. This fact 
accounts for the permissibility of rearranging mono
mials in A (PBW) theorem). On the other hand, once 
we are in A~" no rearrangements can be made (e. g., 
lll2 and l2l1 are unrelated) as the ideal R.' cannot be 
used to effect such rearrangements (the mapping p 

vanishes identically on R. '). Put in another way, there 
can be no PBW -like theorem for A~". To appreciate 
this statement consider the following question: Why can 
one not work with T(L) [T'(L)} exclusively instead of 
with A(U(X, (J.)) and, thus, encounter Lie elements 
directly? The fact is that without R. (R. ') no reordering 
would have been meaningful. More specifically, a term 
such as e10 e2 would be completely different from e2 0 e1; 
these two expressions could not have been related in any 
manner. The PBW theorem constitutes the culmination 
of the role of R. (R. ') in the formation of the enveloping 
algebra (UEMA) of a Lie algebra. In this respect, A~" 
is like T<L), i.e., no rules pertaining to rearrange
ments can be established for it. 

According to what we have said above, both A and A~" 
can be thought of as algebras of L monomials. Ex
tending our considerations to U(X, (J.), we see that the 
projection mapping makes it possible to identify, e. g." 
L j and l j where L j = l j + R.', l j c: L. Similarly, we can 
write II x l2 for L1 x L2 and call II x l2 a nonassociative 
Lie monomial belonging to UC>c, (J.). Theorem 2.2 
finally permits us to write 

(2.41) 

We shall take (2.41) to reflect the practical essence 
of Theorem 2.2 for monomials of weight 2. Our con
siderations can be extended to monomials of larger 
weight with the resulting formulas being, of course, 
more complicated. Note an important consequence: 

a x {3 = (x + (J.) a{3 (a, (3 c: F), (2.42) 

where by a X{3 we mean (a + I<. ')X (13 + 1<.'). From (2.42), 
the reason for our distinguishing the degree from the 
weight of a U(x, (J.) monomial becomes obvious. Thus, 
scalar factors in a given U(x, (J.) monomial do contribute 
a term (\ - (J.) in the denominator of (2.34) which is 
compensated by the factor (x - (J.) entering through 
(2.35). The monomial (a 1 + R. ') X (ll + 1<.') X (l2 + I<. ') 
x (a 2 + R. ') X (l3 + R. '), for example, has degree 3 and 
weight 5. 

We shall use the result of Theorem 2.2, in particular 
through its more straightforward form (2.41), in both 
the next section and the appendix. 

III. GENERAL PHYSICAL CONSIDERATIONS AND 
AN INTERESTING SPECIFIC EXAMPLE 

The contact between Lie groups (algebras), on the 
one hand, and field theory, on the other, comes through 
representation theory. BaSically, one wants to relate 
observed (or conjectured) symmetries to the structure 
of a Lie group. One then works with field variables that 
belong to a space on which the assumed symmetry (Lie) 
group acts through a representation. As is well known, 
the elements of the Lie algebra of a Lie group 13 corre
spond (via their representation) to the generators of 
infinitesimal transformations. Accordingly, algebra 
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representations are not interesting enough by them
selves. However, a relation between an element of the 
Lie algebra and an element of the Lie group is es
tablished via the so-called exponential mapping. The 
latter can be speCified in an abstract topological man
ner, but its more practical and readily applicable form 
is obtained by referring to the iniversal enveloping 
algebra of L. Secondly, the existence of the universal 
enveloping algebra of a Lie algebra L is of vital 
practical importance when it comes to representations 
of L. 

To appreCiate the last statement consider what is 
usually done when one deals with a representation p of 
a Lie algebra L on some vector space. One auto
matically sets 

(3.1) 

Similarly, when one considers two successive in
finitesimal transformations one assumes that, e. g. , 
P(l2) P(ll) makes sense as representing an ll-transforma
tion. In both the above examples, it is the framework of 
the universal enveloping algebra that needs to be em
ployed; otherwise, the object l2l1 would not make any 
sense. Fortunately, the homomorphism which always 
exists between L and A L ensures that (3.1) can, indeed, 
be used. 

To be more precise, let us recall certain important 
aspects from the theory of representations of a universal 
enveloping algebra. In particular, we know that the set 
of all representations of L on a vector space V is in 
one-to-one correspondence with the set of all rep
resentations of A on V (A denotes the universal 
enveloping algebra of L )14. 

Note that, as an associative algebra, A has a faithful 
representation by linear transformations on a certain 
vector space. It follows that any Lie algebra also has 
a faithful representation by linear transformations. This 
is a result which is often used in connection with local 
field theory. 

Next, let us briefly comment on the connection be
tween the enveloping algebra and the Lie group. As is 
well known, the exponential mapping relates an element 
X of the Lie algebra L to the element expX of G. 15 In 
its abstract definition the mapping exp: L ~ G sends 
lines in L (i. e., vectors along a given direction) to 
geodesiC curves on the group manifold. However, a 
more practical approach, once again, is arrived at if 
we refer to the enveloping algebra and think of expX in 
the conventional way, i. e. , 

1 2 1 3 expX=I+X+ -X + -X + ... 2! 3! . 
(3.2) 

Now, (3.2) really makes sense if expX stands for a 
representation of the corresponding group element and 
I,X,X2 , etc., are representations of corresponding en
veloping algebra elements. Then, we can interpret 
(3.2) as follows: expX is a (finite) group transformation 
which is the sum of a series of infinitesimal trans
formations generated by X. 

The general conclusion from the above discussion is 
that the universal enveloping algebra A of a Lie algebra 
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is of indispensable practical value when it comes to Lie 
representations. Furthermore, the framework of A is 
necessary for expanding the action of a group element 
in terms of a series of infinitesimal transformations. 
In the case of a UEMA of a Lie algebra, one does not 
know whether the parallel to a group, standing in 
relation to lj(>", J..l) as G stands in relation to A, exists 
and, if it does, what its mathematical structure is. 
Clearly, if one wants to see a lj(>", J..l) mathematical 
scheme finding applications in physics one would have 
to have the parallel of the Lie group. Since, now, we 
have built lj(>", J..l) from the Lie algebra L, one may be 
tempted to think that perhaps the group struch~re of G 
can support /j(>", J..l) as its nonassociative, (>.., IJ.)
parametrized enveloping algebra. That this is not so, 
can be seen very easily if we consider the Lie group 
product 

gl • g 2 = exp tX· exp tY. (3.3) 

The well-known Campbell-Hausdorf formula gives 

(3.4) 

where 0(t3) contains third-order terms in t. For con
venience let us assume It I « 1 so that 0(t3) will con
tain negligible terms. In (3.4) [X, Y] stands for the en
veloping algebra expression XY - YX. If, now, we sub
stitute the UEMA framework for the universal enveloping 
algebra without changing the underlying group, we face 
difficulties. In particular, the Lie bracket [X, Y] in 
(3.4) will be substituted by16 [X, Y]' = (>.. -IJ.) [X, Y]. 
However, such a redefinition shifts the product gl' gz 
(see Fig. 1). Indeed, t(X + Y) + tf (>.. - J..l)[X, Y] will not 
lie along the direction of t(X + Y) + tf [X, Y] in the vec
tor space L. Accordingly, the exponential curve of the 
frist expression will not coincide with that of the second 
on the group manifold. Hence, to say the least, the 
adoption of the UEMA in the place of the universal en
veloping algebra of L alters the group structure of the 
underlying manifold. 

Arguing in a cruder way, we can say that the UEMA 
of a Lie algebra L, even though constructed from the 
latter, does not go naturally with L or with the Lie 
group G. It seems reasonable that one should try to find 
(non-Lie) structures L' and G' which should be related 
to L and G, respectively, in some simple way-much 
as lj(>", J..l) is related to A. Only then would one have 
a completely non-Lie framework which, in prinCiple, 
can be employed in place of the customary Lie frame
work. In such a case, the parameters>.. and J..l would 
have to be given some physical interpretation. We shall 
make some relevant speculations on this matter in the 
next section. 

We shall not, in this paper, attempt to discover the 
parallel of G for a UEMA. Instead, we shall turn our 
attention to representations of the UEMA itself. We shall 
think of them as infinitesimal (non-Lie) transformations. 
Since a UEMA is a nonassociative algebra, we do not 
expect that it has linear representations on a vector 
space. Let us, in fact, recall the requirements for a 
representation to be linear: 

(1) (A + B)x =Ax + Bx, 
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G.group manifold 

FIG. 1. The geodesic eXP{s ex + 1') +!,s.2 [X, YJ}, on the group 
manifold, is shifted if A - j.( '" 1. 

(2) (aA)x =A(ax), 

(3) (AB)x=A(Bx), 

where x belongs to the representation space, A and B 
are representations of algebra elements, and a belongs 
to the field of scalars over which both the algebra and 
the representation vector space are defined. It is not 
hard to see that the last property is not shared by the 
UEMA. In fact, let a, bEL with A, B being their 
respective representations. Then, we set Bx = y and 
A(Bx) =Ay. On the other hand, A x B = MB + J..lBA from 
which follows (AB)x = My + >"B(Ax). This expression is 
not, in general, equal to Ay. It follows that the 
representations of a UEMA are not linear. 

We devote the rest of this section to an application of 
interest and, for this purpose, we restrict ourselves to 
the Lie group U(1). We recall that local U(1) trans
formations, within the conventional Lie framework, 
lead to the introduction of an electromagnetic field 
potential 17 in a very natural way. To be specific, sup
pose we have two charged scalar fields, cf> and cf>*, in 
a theory which is invariant under local U(1) transforma
tions. The electromagnetic field potential A" is then in
troduced in order to covariantize the derivative 2jJ.' The 
Lagrangian density 

(3.5) 

where 

V"cf>=(a ... -ieA ... )cf>, V"cf>*=(a,,+ieA,,)cf>*, 

F"y=a"A y- a"A ... 

and V(cf>cf>*) is a polynomial expression in cf>cf>*, is in
variant under gauge transformations of the second kind 

cf> - exp[ia(x)]cf>, cf>* - exp[ - ia(x)]cf>*, 

1 
A ... -A ... - - 2 ... a(x). e 

In particular, (3. 6a) implies that cf>cf>* - cf>cf> *. 

(3.6a) 

(3.6b) 

Suppose, now, that we choose to work within the non-
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Lie framework of a UEMA. (We re-emphasise that, 
since we lack the full mathematical machinery, we con
fine ourselves to infinitesimal transformations. ) A new 
possibility now arises. We start with the Lagrangian 
density 

(3.7) 

i. e., we are specializing to the simple case V( CPCP*) 
= ~m2cpcp*. If we want our theory to be invariant under 
U(I) related local transformations and we work within 
the framework of the UEMA of U(I), we could consider 
the following infinitesimal transformations: 

cP - exp[iO'(x)] cP '" cP + iO'(x)CP, 

CP* - exp[ - ij3(x)]cp* '" CP* - i(3(x)CP*. 

(3.8a) 

(3.8b) 

We shall comment later on the phase difference in the 
way cP and CP* transform. 

Now, a(x) and (3(x) are actually multiplied by the 
generator of infinitesimal U(I) transformations. 18 As is 
the usual practice, however, the aforementioned gen
erator has not been denoted explicitly, since it can be 
scaled via O'(x) [and j3(x)] to the identity operator [due to 
the one-dimensionality of U(I)]. But, whereas the 
identity operator of the usual (Lie-framework) rep
resentation has the trivial property 

(p (I) p(I)cp = p(I)CP = cP, (3.9) 

within the UEMA framework we have 

(3.10) 

We see, then, that (neglecting higher order terms in 
the infinitesimals) one now obtains 

CPCP* - (A + ~ )cpCP* + itA + ~ )(0' - (3)CPCP* 

= (A + ~)[ 1 + i(O'(x) - (3 (x» ] CPCP* (3. 11) 

Consider, first, the case 0' =(3. One sees that the 
term tm2cpcp* in (3.7) must be replaced by 
[m 2 /2(~ + A)]CPCP*. At the same time, one has to make 
the replacement 0" - V" where 

V"CP= __ 1_ (0" -ieA,,)cp, 
..;~ +>.. 

V CP*= _1_ (0 +ieA )CP*. 
" ..;~ +>.." " 

(3.12) 

Thus, one obtains the regular formalism of electro
dynamics with a redefinition of the matter (scalar) fields. 

Suppose, on the other hand a - (3 =1' ~ O. One could 
still obtain an invariant CPCP* term by choosing 

(>.. + ~)(1 + iy(x» = 1, 

or, for infinitesimal y, 19 

>.. + ~ = exp(- iy). 

(3. 13) 

(3.14) 

It is straightforward to see that the same factor, i. e. , 
(>.. + ~) exp(iy), will appear in front of V" CPV" CP*. By 
(3.14) this factor will, once again, disappear. The big 
difference is that we now need two gauge fields. In 
particular, we get 
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V" cP = (0" - iaA" )cp, 

where A" transforms according to 

and 

1 
A" -A" - - o"a(x), a 

V"CP*=(o" +ibB,,)CP*, 

where B" transforms according to 

1 
B -B - - ° 11 (x) " "b "I-' • 

(3.15) 

(3 16) 

(3. 17) 

(3.18) 

Even though the above scheme is quite unorthodox, it 
bears striking similarity to the (phenomenological) one 
recently proposed by Hsu 8 in his version of superweak 
interaction interpretation of CP violation by the KO 
system. For example, the vector-scalar part of Hsu's 
Lagrangian reads 

L lIsu = - (il" + iF*(A" - i(3C" »Ko+ (0" - iF(A" + i(3C,,»)KD 

- m2~+~ - tF "yF"Y - tC "yC"y 

+ (terms pertaining to choice of gauge), (3.19) 
where F is a complex and (3 a real number and the 
meanings of F"y and C"y are evident. Furthermore, 
A" and C ... transform according to 

A -A +F il ... A(x) 
" " real IFl2 

il"A(x) 
C,,-C,,-Fim~· (3.20) 

By rearranging our A" and B ... one should obtain Hsu's 
Lagrangian with the redefined vector fields obeying 
(3.20). Note that (3.20) implies that our y is constant, 
i. e., that a(x) and (3(x) are functions differing by a 
constant. 

Hsu's model actually requires the presence of spin-t 
fields also, but no added difficulty really enters by in
troducing such fields. Once more, we require that w(x) 
and iJj(x) have the transformation properties 

l/J - exp[ia(x)]l/J, if;" - exp( - iiJ(x)];P (3.21) 

and the spinor sector of Hsu's Lagrangian follows in the 
same manner . 

The drawback from all this is that we have restricted 
ourselves to infinitesimal transformations since we lack 
the existence of the analog to a group structure. Still, 
it should become evident from this example that there 
could, indeed, be merits in the whole UEMA scheme. 

We close our present discussion with some remarks 
on the phase difference ')1(= a - 13) between the way the 
particle transformation and that of its charge conjugate 
[e. g., relations (3. 8a, b)]. Presumably such a phase 
difference should be connected with a "charge" violation 
which Hsu already suggests in Ref. 8. To follow Hsu's 
reasoning, his theory suggests that the charge of all 
particles fulfills the relation 

"charge" = q + AS, (3.22) 

with A a very small (constant) parameter, S the 
strangeness and q standing for ± e or O. Furthermore, 
the "charge" of (3.22) is conserved implying also con
servation of strangeness. 
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Most probably the relation between Hsu's additional 
charge and our charges a, b should be something like 

(a - /1) /2 = X5. (3.23) 

IV. DISCUSSION AND SPECULATIONS 

As we have already mentioned in the introduction, 
many speculations can be made concerning the use of 
two parameters one has in hand. We note that, for our 
case, the two parameters are presumably connected 
with a general non- Lie symmetry scheme which, hope
fully, can be employed for physical descriptions. In 
the previous section, we have indicated that the corre
sponding (non-Lie) framework is far from being com
plete. On the other hand, we have also shown, in Sec. 
III, that one unorthodox scheme which can be deduced 
from UEMA considerations bears striking resemblance 
to a phenomenological theory proposed for the explana
tion of a very important problem in elementary particle 
physics. Accordingly, we are encouraged to proceed 
and comment briefly on a few possibilities of UEMA 
relevance to physics even though we are aware of the 
fact that a complete UEMA formalism is not as yet 
fully developed. 

Our most immediate thoughts turn to current algebra. 
Indeed, some recent approaches aimed towards the 
better understanding of symmetry breaking may have a 
natural position within the realms of the UEMA of 
5U(3). We are referring to the deformed algebra ap
proach of Oehme 20 and Mathur,21 as well as the closely 
related "weighted" SU(3) transformations of Rest and 
Welling. 22 These attempts lead to insights concerning 
the Cabibbo angle as well as several good predictions 
connected with KI3 form factors. We shall indicate 
briefly that there exist possibilities of incorporating 
such approaches into the UEMA scheme. In paSSing, we 
would like to remark that what we hope the relevance of 
the UEMA machinery will be, once fully developed, is 
precise ly its capacity to incorporate apparent deviations 
from an ideally perfect symmetry within a background 
where the aforementioned symmetry firmly resides. In 
this sense, the deformed algebra ideas, for example, 
constitute exactly the kind of approach that fits into the 
ideas behind what we hope to be the physical relevance 
of the UEMA scheme. Perhaps the most commonplace 
term "hidden symmetry", which is also becoming of use, 
best reflects the content of the last two statements. 
[Indeed, it may be appropriate to attribute the ideal 
symmetry, which always resides in the background, to 
some hidden (particle?) structure of unobservable fields 
and reserve the somewhat looser symmetry framework 
(e. g., UEMA) to reflect what is observed. ] 

So as not to make our discussion too involved we 
shall concentrate, for the most part, on Oehme's 
scheme 20 which is the simplest of the three we have 
mentioned above. Consider a chiral octet of SU(3) cur
rents J~ (= V~ +A~) whose charges obey chiral SU(3) 
X5U(3) commutation rules at equal times (ET). Suppose 
we believe the chiral SU(2) XSU(2) part of the symmetry 
to be exact (m. = 0 and absence of electromagnetic ef
fects). According to Oehme, a very Simple way to im
plement this state of affairs is to redefine the currents 
by 
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a=4,5,6,7 
(4.1) 

a=1,2,3,8. 

Accordingly, equal-time charge commutators remain 
the same except for those among charges with indices 
running between 4 and 7. In particular, 

(4.2) 

i. e., a factor of e enters on the right-hand side. This 
procedure makes it possible to go ahead with a com
putation of the Cabibbo angle and, more important, to 
obtain some insight as to its meaning. 

Now, (4.2) induces some thoughts in connection with 
the UEMA formalism of SU(3). Suppose, in general, 
that we deviate from a Lie to the corresponding UEMA 
framework in a minimal manner, by which we mean 
that we use U L (X, JJ.) to replace A L' But whereas A L 

can be put into natural correspondence (homomorphism) 
with the Lie algebra L, U L(X, JJ.) corresponds-in the 
same manner-to the Lie algebra (X - JJ.)L, By (X - JJ.)L 
we mean the Lie algebra L' with elements formally 
identical to those of L but with Lie product 

[l1l2]' = (X - JJ. )[l1l2]' (4.3) 

It is not immediately obvious from (4. 3) whether the 
parameter a'" X - JJ. is of any special significance. On 
one hand, (4. 3) looks like a redefinition of the basis 
elements of L or, alternatively, of its structure con
stants. Thus, the SU(3) equal-time commutator 

ET[Q., Qb]=if.bcQc 

goes into 

ET[Q., Qb]' =ia f.bCQ C 

(4.4) 

(4.5) 

with a, b, c running through all SU(3) indices. In turn, 
(4.5) is equivalent to 

ET [Q~, Q~] = iaf.bc Q~, 

whereQ;=aQ" j=1, ... ,8. 

(4.6) 

On the other hand, the study of subalgebras-or, more 
generally, of inner structures-of UEMA may open up 
possibilities of the kind described by (4.2). For ex
ample, the subalgebra SU(2) of SU(3) has its corre
sponding (x - JJ.)SU(2) image. Suppose, then, we build 
a (X, /.L) generalization of SU(3) in two stages, i. e., we 
first construct (X' - /.L ') SU(2) and then, through a second 
generalization (t, ill, we introduce the full (X, /.L) gen
eralized SU(3). In that case, we would have two param
eters, a' == X' - /.L' and a = \' - iJ" which could be used to 
obtain commutation relations such as those given by 
(4.2). In fact, if it is our contention (and/or ambition) 
that the (X, /.L) parametrization measures deviations from 
exact symmetries, we would (physically) expect a dif
ferent (X, /.L) content for the SU(2) XSU(2) part of the 
algebra of currents than for the whole of SU(3)XSU(3)
as observation warrants. Suppose, then, that (4.5) is 
used to describe the full SU(3) part of the algebra of 
currents, whereas for the isospin restriction we accept 
a generalization (X', /.L ') closer to (1,0) and reflected by 
the relations 
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(4.7) 

In that case, Q1' Q2' and Q3 would not be the true 
isospin charges (R J). Rather, there should be a relation 
between the two sets given by 

Qk=={3R k, k=I,2,3~ 

where (3 = a/a'. 

(4.8) 

Similarly, if the (:\., /1-) generalization of the U(I) sym
metry associated with the hyper charge was effected 
through (:\.", J..L")-presumably closer to (1,0) than (:\., /1-)
then Qa would be related to the hypercharge charge Y 
by 

Qa="YY, 

where 'Y = a/a". 

In particular, Oehme's choice is a' = a" = 1 and 

(4.9) 

(3 =Y = a. Mathur's work, 21 on the other hand, deals 
with I if- a' "* a" "* 1. With some minor adjustments one 
can also accommodate, along the same lines, the 
"weighted" SU(3) transformation approach of Rest and 
Welling. 22 

As a final speculation, let us take note of the fact that 
intrinsic symmetries seem to form a hierarchy [e. g. , 
U(l), SU(2), SU(3)] whereby the more complex the 
intrinsic symmetry the more it appears to be broken. 
As we have already argued in this section, the UEMA 
parametrization (:\., J..L) can conceivably measure devia
tions from a perfect (Lie) symmetry through its 
departure from (1,0). Consider, now, for a moment, 
the ideas of Lee and Wick, 23 on one hand, and the work 
of Kirzhnits and Linde 24 and of Weinberg, 25 on the other. 
What emerges from these studies is the mutability of 
physical laws, or, perhaps more appropriately, the 
existence of domains in the universe which may exhibit 
different characteristics of symmetry behavior. Suppose 
that:\. and /1- are taken to be local functions of space
time (presumably very slowly varying). Then, one can 
think of a space-time "evolution" of intrinsic sym
metries-an idea which comes close to the thinking of 
Kirzhnits and Linde as well as Weinberg. Perhaps, 
also, one could find a relation between, say, (J..L - 0) and 
the nonvanishing expectation value (¢(x» in an abnormal 
domain of Lee and Wick. 

It would carry us too far to continue such speculations. 
In fact, it would be presumptuous to go on doing so when 
a complete non-Lie framework for symmetry de
scriptions is not as yet available. It would be interesting, 
in any case, to pursue unorthodox schemes such as 
the one we have introduced here. For the particular 
case of a UEMA the important next step is to look for 
the corresponding "mutation" group. 
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APPENDIX 

In this appendix we shall be concerned with an applica
tion of the PBW theorem for a UEMA, proved in Sec. 
II, pertaining to monomials of degree 2. For this 
particular case the U (:\., J..L) expansion does not contain 
any A terms. 

The most practical implication of the PBW theorem, 
in connection with universal enveloping algebras is the 
following. Let {e1 , ••• , en} be an ordered basis for L . 
Then, the element I together with all standard mono
mials eh e j2 .•. elk' j1 ~j2 ~ '" ~jk' form a basis for the 
universal enveloping algebra of L. This remark leads, 
naturally, to a Gell-Mann-Okubo mass formula for, 
say, an SU(3) octet [i. e., L =SU(3)]. Indeed, the well
known formula 

T~ =a6~ + bA~ + c 6A~ A~, 
j 

(AI) 

where T~ is an SU(3) tensor operator (of second rank), 
is a natural consequence of the fact that a general 
monomial of degree 2 can be expanded as a linear com
bination of standard monomials of degree 2 and less. 
Thinking, in particular, in terms of a matrix rep
resentation of L, it follows that 

where A, B, as well as the E j , are matrix representa
tions of Lie elements (the E j' in particular, correspond 
to matrix representations of the basis of L). Not 
thinking in terms of the universal enveloping algebra A, 
AB corresponds to a second-rank [SU(3)] tensor, Ac
cordingly, (AI) is a tensorial version of (A2). 

We want to derive the analog of the Gell-Mann-Okubo 
mass formula within the framework of the UEMA of 
SU(3). To this effect we shall neglect mixing effects be
tween multiplets (even though such a mixing is very 
pronounced in some cases, e. g., ¢ - w mixing). Let us, 
following Okubo, confine our conSiderations to an 
SU(3) octet (baryon octet for simplicity) and assume that 
the mass operator transforms as an SU(3) scalar plus 
a Y = T = 0 of an SU(3) octet. In making this assumption 
we have excluded the possibility of mixing between 
particles belonging to different representations of 
SU(3) as already remarked. Choosing appropriate 
SU(3) generators 26 A;, i,j=I,2,3, with L:;:lA;=O
corresponding to the E j of Eq. (A2)-it follows that 
T~ (T = Y = 0) has the form 

(A3) 

where C2 is the second-order Casimir operator for 
SU(3). One can obtain the Gell-Mann-Okubo mass 
formula from (A3) in a straightforward manner. 

Returning now to our UEMA, the expansion (A2) is 
replaced by an expansion in terms of standard mono
mials with respect to 0'. Let us choose for SU(3) the 
same basis as that leading to (A3). We must first make 
some adjustments. The standard monomial A~A~ will 
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be replaced by 

A;A~-A;xA~=\A;A~ + J..LA~A;. 

Using the commutation relation for the A;, 
[Ai Ak] F.iAk F.kAi 

i'. 1 = v 1 j - v j p 

we obtain 

(A4) 

(A5) 

A~xA~= (X + J..L)A;A~ + J..I.(A~ +A~) - 2J..1.A~. (A6) 

Substituting A~ +A~ = -A;, we finally have 

A;xA~=(X+J..L)A~A;-3J..1.A;. (A7) 

Next we consider the Casimir operator C2 which is 
given by 

(AS) 

The replacement of (AS) for the case of the UEMA is 

(A9) 

Obviously, since X and J..I. belong to the field of scalars 
F over which the algebra of SU(3) is defined as a vector 
space, (X + J..L)C2 is an SU(3) scalar inasmuch as C2 is. 

Recalling that 27 

A~ = - Y, A~A~ = C2 - T2 + ty2 + 3/2Y, (A10) 

where T is the isospin and Y the hypercharge operator, 
we finally conclude that 

T; = - aY + b[(X + J..I.) {C 2 - ~ + ty2 + 3/2Y} 

which gives 

x[ty2 -T(T+1)]. 

Note that we recover the Gell-Mann-Okubo mass 
formula when X = 1, J..I. = O. 

(A11) 

(A12) 

A similar formula, not identical to the above, how
ever, has been given 6 within the framework of the 
mutation algebra of an enveloping algebra, i. e., A(X, J..I.). 

Ip. Jordan, J. vQn Neumann, and E. Wigner, Ann. Math 35, 
29 (1934). 

2Theusualwayofregarding{a,b}, i.e., {a.b}=ab+ba, pre
supposes the existence of the product ab. Here, we want to 
remain quite general in that the product {a, b} is considered 
to have been introduced a priori by itself. 
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In this paper. we shall give necessary and sufficient conditions for the existence of entire solutions to the 
functional equation t\J2+g'l'2 = h, where g and h are given nonzero polynomials in z. This functional 
equation arises when one studies the Percus-Yevick integral equation of hard sphere mixture. The 
contruction of all such entire solutions t\J and 'I' is presented. Also, we shall show that it is possible, in some 
cases, to prove the existence of solutions with prescribed asymptotic properties at z = 00. 

INTRODUCTION 

Consideration of the Percus-Yevick integral equation 
of hard sphere mixture leads one to consider functional 
equations of the type 

(1) 

where g and h are given nonzero polynomials in z, and 
IjJ and cP are required to be entire functions of z. In this 
paper we shall give necessary and sufficient conditions 
for the existence of entire solutions to (1). Special solu
tions of this type, for certain polynomials g and h, were 
obtained using singular integration techniques, by 
Penrose and Lebowitz.! We shall give a construction of 
all such entire solutions IjJ and cp by using some different 
and relatively elementary arguments. Also we shall 
show that it is pOSSible, in some cases, to prove the 
existence of solutions with prescribed asymptotic prop
erties at z = 00. (In one very special case it is even pos
sible to show the existence of polynomial solutions and 
to give bounds upon the degrees of the solution poly
nomials IjJ and cp.) Extensions where we replace the 
right-hand side of (1) by a more general function than 
a polynomial and (or) replace the left-hand side by a 
"norm form," of degree n> 2 in n entire functions, look 
possible and are being investigated. 

I. THEOREMS I-V AND LEMMA 

Theorem I below is an existence theorem. Theorem 
II shows the existence of a convenient canonical form for 
those equations of type (1) actually having entire solu
tions. Theorems III and IV describe the general solution. 
Theorem V treats the asymptotic theory of solutions of 
equations of type (1). 

Thcorcm I: There always exist entire solutions IjJ and 
cP of (1), unless for some complex number a and posi
tive integer a, Z - a divides h to the exact power 2a - 1 
while (z - a)2" divides g. 

The follOWing definition is needed for the statement 
of Theorem II. 

Definition: A functional equation 

(2) 
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where g! and hi are nonzero polynomials with gl divid
ing g and hi dividing h, will be said to be constructively 
equivalent to (1) if and only if one can construct an 
algorithm for producing two polynomials p(z) and Hz) 
such that whenever 1/!1 and CPl are entire solutions of 
(2), then IjJ=P(z)l/!l and cp= Hz)cp! are entire solutions 
of (1) and, conversely, every pair of entire solutions 
of (1) is of the form p(z)l/!! and HZ)CPl for entire solu
tions 1/!1 and CPl of (2). 

For the canonical representation we have: 

Theorem II: Each equation of type (1) which actually 
has at least one pair of entire solutions is constructive
ly equivalent to some equation of the form 

(3) 

where p, q, and q! are relatively prime nonzero poly
nomials and q has no multiple zeros. 

We next proceed to describe the structure of the 
general solution of (3). 

Theorem III: Let us choose branches of FriP and %. 
A pair of entire functions IjJ and cP are a solution of (3) 
if and only if they are of the form 

IjJ = % sin(FriP y(z», 

cP = ";p-lql cos(FriP y(z) 

where y(z) may be any multiple valued function which 
is analytic and single valued on the complex plane with 
suitable cuts from the zeros of Pqql to z = 0() removed 
such that: (i) at each zero z j of q, y(z) - nj rr(J(jp)-l is 
analytic for some integer n j , (ii) at each zero Zk of p, 
y - (l k + ~) 1T(FriP)"l is analytic at z = z k for some integer 
lk and (iii) at each zero zr of qt of multiplicity niT> 

y(z) + ~tri log(z - zr)({(jjj)-l is analytic, for some integer 
tr , - mr ~ tr ~ m r, such that ~(mr + ir) is an integer, (iv) 
given a solution pair 1jJ1 and CPt, and any associated Y, 
say Yl' then Y2 is another associated y if and only if 
f(jjj(Yl - Y2) = 2nl1T for some integer nt· 

[Note if y corresponds to the solution IjJl' CPt' then 
y + rr(f(jjj)-l corresponds to the pair - 1jJ1> - CPj and - y 

corresponds to the pair - IjJl' CPl' ] 
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TT/CorcJi/ IV: Let s(z) equal the product of the distinct 
zeros of 1]1(1). For each p, q, qt, and sets of integers 
II 1 and I as in Theorem III there exists a function j') k' r 

1'1 (z) satisfying the conditions of Theorem III concern
ing y(z). Further, Yl(z) may be written in the form 

Yl(Z) = (v'p(z)q(z»-1 i.e v'p(t)q(t)(s(t)}-If(t)dt, 

for some polynomialfU) and some complex number a 
which is not a zero of PQQ1' 

It is clear that any y(z) as in Theorem III, corre
sponding to a particular set of ni' lk' and ty , and the 
Yl(z) in Theorem IV, corresponding to the same set of 
11 j, I k' and t T' differ by an entire function. 

Tlzeore'll V: Set l5=ideg(pq). Let us choose, arbi
trarily, a polynomial F in z. (i) If 15 > 1 is an integer 
there exists some {jXj I' as in Theorem III such that, 
at z = 00, rpq I' is asymptotic to F + 0 (z6-1). (ii) If 15 > i 
is not an integer, there exists some {jXj I' as in 
Theorem III such that, at z = 00, .;p;j I' is asymptotic to 
.fi F + 0 (zo-t). (iii) If 15 equals 0 or 1, then there exists 
some {jXj I' as in Theorem III such that, at z = "", {jXj I' 
is asymptotic to F+O(logz). If l5=:i then there exists 
some .;p;j 1', as in Theorem III, such that, at z =: "", 
.;p;j I' is asymptotic to.fi F+O(l). (iv) If 15> 0 and both 
.;p;j 1'1 and .;pq 1'2 are asymptotic to either F or ..fZ F 
for some polynomial F, up to the error term given 
above for the appropriate value of 5, and if, further, 
1'1 and 1'2 both give rise to the same constants ni' lk' tT , 

then 1'1 =1'2' (v) In parts (i)-(iii) above, given any allow
able set of values of the constants n i , lk, and tT (see 
Theorem III), we may require also that the I' to be con
structed there corresponds to these values of ni , lk' 
and t T' 

Lemma: If, for any two solutions I/! and <p of (1), 
.;p;j I' is asymptotic to a..fZ + 0(1) where a ~ 0 is real 
then on any angular sector about z = 0, not including 
the negative real axis, we see that II/! I and I <p I are 
asy~ptotic to 

exp[a I R..fZ I + O( Ilogz I)], at z = "". 

Proof: Trivial. 

Example: We now consider what we call a more gen
eral Penrose-Lebowitz equation, i. e., 

1/!2 + (az 2 + b)cp2 = r(z2), 

where a and b are complex numbers, a*- 0, r(z2) ~ 0 is a 
polynomial in Z2 with complex coeffiCients, and (az + b)2 
does not divide r(z). We are required to find even en
tire solutions I/! and cP of the above equation, such that, 
for some real a*- 0, II/! I and I cP I are each asymptotic to 

exp[ a I Rz I + 0 (Ilogz I) ], 

on any angular sector about z = 0 not containing either 
the positive or negative imaginary axis, at z = "". 

Set w = Z2. By Theorem I we always have a solution. 
By Theorem V with 5 = i, and the Lemma, we have that 
for each integral choice of n1 [or II if aw + b divides 
r(w)] and the allowable choices of tT there are entire 
solutions I/!j (w) and CPl (w) with II/!I (w) I and I CPl (w) I each 
asymptotic to 
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exp[a IRv'Wi +O(logw)] 

on any angular sector about z = 0 which does not contain 
the negative real axis. Then I/!t (Z2) and CPt (Z2) satisfy the 
desired conditions. 

From Theorem III(iv) and the comment after the 
statement of Theorem III, we see that if in the general 
Penrose-Lebowitz equation above the only free integral 
valued parameter in our solution is n1 (or It), then the 
only solutions are ± I/!, ± cpo This will be the case if qt 
is a nonzero constant. If ql is linear in z2, then we 
have two choices of ii' i. e., it = ± 1. Interchanging I' 
and - 1', if necessary, we may take tt = 1. Then by the 
comment after the statement of Theorem III, the uni
queness of I/!j. and CPt, up to sign, follows. If q t (w) has 
degree larger than one, we cannot have uniqueness, 
even up to Sign, since for one choice of the t/ s we can 
make our I/!(w) + ,law + b cp(w) and qt (w), and our <Ii(w) 
=v'aw+b ((J(w) and qt(w), each, have at least one com
mon zero, while for another choice of the t/s there 
are no common zeros in one of these two cases. [This 
becomes clear in the proof of Theorem III(iii).] 

If we weaken the asymptotic condition slightly, there 
is not uniqueness. There exists an entire function El (z)2 
which is bounded on every ray out from zero but which 
is not a constant and is not even of finite order of 
growth. (The bound is not uniform, of course. ) Adding 
such a function (we can construct many) to ({(jj)-l 1', we 
would obtain II/! I and I cP I asymptotic to 

exp[ a I Rv'W I + 0 (Ilogw I )] 

on each ray out from zero except the negative real axis, 
for a large collection of entire solutions <Ii and cpo 

If we have an equation analogous to the Penrose
Lebowitz equation in that both polynomials are even and 
the equation is already in the same form as (3), then it 
follows from Theorems III and V that if the coefficient 
of cP has degree in Z2 greater than two, it is impossible 
to ever satisfy the asymptotic condition (in the strong 
form) for all real a*- O. At most, a countable number of 
different a's are possible. One would have to go through 
the proof of Theorem IV, in the particular case in order 
to hope to say more. 

We note in passing that by Theorems III and Veach 
equation of the form 

1/!2 + (az + b)cp2 = r(z), 

where a*- 0 and b are complex numbers and r(z) is a 
nonzero polynomial in z with complex coefficients, has 
at least one pair of solutions I/!l and CPl' where 1/!1 and 
CPt are polynomials. This follows from Theorem V with 
5 = i and j? = 0 and the representation of I/! and cP in 
Theorem III. In fact, one may bound the degrees in z 
of the solutions 1/!1 and CP1 by i degr(z) and i [degr(z)] - i, 
respectively. In the case of a quadratic coefficient for 
cp2 we are again guaranteed the existence of polynomial 
solutions, but we have no bounds on their degrees, by 
this argument, because of the O(logz) term in the 
asymptotic expansion of {(jj) Y. 

II. METHOD AND PROCEDURE 

We shall first prove the nonexistence of solutions 
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under the conditions asserted in Theorem 1. Clearly 
(z - a)2"'-1 divides Ij!z, so (z - a)'" divides Ij! and (z _ a)Z'" 
divides both 1j!2 and g. But then (z - a)Z'" divides 11, con
trary to hypothesis, so there are no solutions. The re
mainder of Theorem I is a consequence of Theorems 
II, III, and IV. 

We shall next prove Theorem II. We begin with an 
example. Consider the equation 

1j!2 +z2(z -1)(z - 2)(z - 3)2cp2 =Z2(Z -1)2(Z - 2)(z - 4). 

We may write this as 

where the polynomials in square brackets are each rela
tively prime except for the first and third, which, in
deed, have all their distinct linear factors in common. 
If the first and third factors above had no multiple 
zeros, we would have the desired form already. In
stead, we notice that z(z - 1) must divide t)! and, using 
this, z - 1 divides cp 0 Then setting t)! = z (z - 1)1j!1 and 
cp =:;. (z - 1)CPl we have 

t)!i + [(z -l)(z - 2)][(z - 3)2]cpi= [z - 2][z - 4], 

which is in the desired form, The same sort of scheme 
will now be used to handle the general case. 

For any two polynomials QI and {3 let (QI, (3) denote 
their greatest common divisor. We may write (1) in 
the form 

J;2 + Q1Qzcp2 = Q3Q4 (4) 

where (Q1' Qz) = (Q3, Q4) =:;. (Q3' Q4) = (Q2' Q4) = 1, L e. , 
let Q1 denote the monic polynomial of least degree such 
that (gQj'l, (g, 11» = 1, let Q3 denote the monic polynomial 
of least degree such that (I1Q:i1, (g, 11» = 1, let Q2 "" gQj'l, 
and let Q 4 = I1Q:il, If Ql and Q3 have no multiple zeros, 
the Q1 = Q3' and we are already in form (3), Suppose 
z - a is a factor of both Q1 and Q3 of multiplicity m and 
n, respectively, where m, n > L We shall show the (4) 
is constructively equivalent to an equation of type (5) 
immediately below, i. e" 

(5) 

where the Q;,l satisfy the same conditions as the cor
responding Q;, i=1,2,3,4, where Ql,lQ2.1 divides Q1Q2' 
where Q3.1Q4.j divides Q3Q4, and where z - a has a com
mon multiplicity of either zero or one in both Ql,l and 
Q3,1' This will suffice to prove Theorem 11, since one 
may continue until after t iterations, for some positive 
integer t, Q1, t and Q3, t are identical and have no multi
ple zeros. 

There are four possible cases. Suppose n is even 
and n "" 111. We may set t)!= (z - a)"iZlj!j and cancel (z - a)" 
from both sides of the equation. Then set Ql,l 
=Qj(z-a)-", Q2,j=Qz, Q3.j=Q3(z-a)-m, andQ4,i 
=Q4(Z - a)"'-". Suppose n is even and n> m. If m is 
even we may set t)!= (z - a)mi2t)!j, Qj,j =Qj(z - at"', QZ.1 

=Q2, Q3,j=Q3(z-at"', andQ4,1=Q4(z-a)"-"'. Ifm 
is odd then (z - a)"'+1 divides t)!z and (z _ a)2 divides cp2. 
We may reduce to the case where m is replaced by 1 
and n by n - (11'1 + 1). If n - (m + 1) ~ 2 we may continue, 
reducing to the cases of m replaced by 1 and n replaced 
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by n- (m + 1) - ],j=O, 1, •.. , ~ln- (m + 1) I before 
finishing. 

Suppose next that n is odd and n --:: m. This is lhe case 
where there are no solutions, by Theorem I, so we 
have nothing to prove. Suppose n is odd and n" m. Then 
(z - a)'" divides Ij!z. If m is even we may set Ij! 
= (z - a)mi21j!1' Qt,1 = Q1 (z - atm, Q2, j = Q2, Q:l,1 
=Q3(z-a)-m, and Q4.j=Q4(z-a)"-"'. If 111 is odd and 
'11=n, thensetlj!=(z_a)(m-jl/zlj!j, Qj.l=Ql(Z-a)-m+\ 

Q2,1=Q2' Q3,1=Q3(Z-atm+1, andQ4.t=Q4' If '11 andn 
are odd and n> VII, then (z - a)"'+1 divides 1j!2 and (z _ a)2 
divides cp2. We may reduce to the cases where m is 
replaced by 1 and n by n - (m + 1) - 2j, ] = 0,1, ... , Hn 
- (m + 2)]. This proves Theorem II. 

III. PROOFS OF THEOREMS III-V 
We shall now prove Theorem 111. Suppose that 11> 

and cp are two entire functions which satisfy an 
equation of type (3), We may factor 1j!2 + qpcp2 into 
(t)! + i {(jp cp)(t)! - i {j)q cp), If we set 

t)!+i{(jp cp=i~ exp[i{(jp y(z)], (6) 

this will define, up to a choice of the branch of the 
logarithm, a multiple valued function y(z) which is cer
tainly analytic on the complex plane with suitable cuts 
from the zeros of PQql to Z = 00, as required by the state
ment of Theorem 111, Since 

we see that 

Ij! - if(jjj cp=-i~ exp[- if(jjj y(z)]. 

If z j is a zero of Q (hence a simple zero) and if we 
analytically continue (6) around Zj' we obtain 

t)!-i{(jp cp=-i~ exp[-i{(jpy(z)] 

(7) 

where y(z) is the analytic continuation of y(z) about ZjO 
Then exp[yqp(iy(z) - iY(z»] = 1. Hence 

i f(jf) y(z) = i f(jjj y(z) + 2njrri, 

for some integer njo Thus y(z) - nj rr(f(jf)-l has an 
isolated singularity at z = Z j' Consider the identities 

t)!(z) = -~ sin(yqp y(z» 

cp(z) = ';p-1Ql cos(/(jp y(z). 
(8) 

Suppose z - Zj' If I sin(/(jp y(z)) I has 00 as a limit 
value as z - Zj' then so does I cp(z) I, which is impossi
ble for an entire function. Thus I sinyqp y(z) I has only 
finite limit values at z = z j' Let L be such a limit value. 
If L*O then t)!(z) has a zero of order i at z=Zj, which 
is impossibleo Thus L = 0 and lim.~z.1qp y(z) exists and 
equals njrr for some integer nj. It follows that 
-((jp(y(z) - n jrr({(jp)-I) has limit zero as Z - Z j; hence 
the singularity of y(z) - n j rr({(jpt1 at Z = Zj is removable 
and (i) y(z)-nj rr(yqp)-1 is analytic at z=Zj' 

Analytic continuation of yqp y(z) about a point Zk 

which is a zero of p of odd multiplicity gives us the 
equations 

sin(vqp y(z)) = - sin(..f(jj) y(z), 

cos(..f(jj) y(z» = - cos(yqp y(z»), 

where y(z) denotes the analytic continuation of y(z) 
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about z = Z k' Then Hz) = y(z) - (2/ k + 1) rr(I(/p)-l for some 
inte~er I k' Thus gk(Z) = y(z) + (l k + t) 1T(..f(jptl has an iso
hlt ed sin~ulari ty at Z = Z k' 

Since J''+ i vqp .p is analytic in ...J Z - Z k at Z == Zk and 
J'(Zk)' is nonzero at Z==Zk, we see that log(lj!+ i..frjj) cp), 
hence also ..;qp y(z), is analytic in ...}z - Zk at Z ==Zk' [If 
the multiplicity of the zero at Z == Zk is even, it follows 
that..;q;; y(z) is analytic at Z==Zk'] We write..f(jj) y(z) as 
(1 k + ±) rr +..;qp gk(Z) where gk(Z) is singlevalued and analy
tic in a punctured disk centered at Z == Zk' Since..;qp y(z) 
is analytic in...}z - Zk at z ==Zk, it follows thatgk(z) has, at 
worst, a pole at z == Z k' But then, since the order of 
vanishing of ..;qp at Z == Zk is not an integer, .J(jp gk(Z) 
vanishes at Z = Z k' Writing' 

cp == (- 1)I/l+l ...Jp-lq1 sin(..f(jj) gk(Z» , 

we see that ..;qp gk(Z)(ij))-l must be bounded as Z - Zk' 
Then gk(Z) is analytic at Z == Zk' if lk is odd. 

Suppose that Zk has even multiplicity. Then, from 
the above, y(z) has, at worst, a pole at Z == Zk' Also, 
since 

cp = ...Jp-lq1 cos(..f(jj) y(z» 

is entire, we must have that ..;qp y(z), which is analytic 
at Z ==Zk by the comment in parenthesis above, must 
equal (1 k + t) 1T at Z == Z k for some integer lk' Then 

cp= (- 1) le1 ...Jp-lql sin{...J([p[ y(z) - (lk+ i) rr(...J([p)-I]}. 

Since 

vqp[y(Z) - (lk + i) rr(vqp)-I] -0 as Iz - zki-o, 

we see that q(z)[y(z) - (lk + t) rr(..f(jj)-I] must be bounded 
as Z - Z k' Therefore, (ii) y(z) - (l k + t) rr(..fQPtl is ana
lytic at Z=Zk, for all zeros Zk of p(z). 

Let Z r be a zero of q j. In (6) let lj! + i.J(jp cp vanish 
to the order t(m1' + tr) at z == zr' Then lj! - i..;qp cp vanish
es to the order i(m r - t1')' Also, from (6), ..;qq; exp[i.J(jp 
y(z) - ttrlog(z - zr)] is analytic and nonvanishing at 
Z =zr; hence, (iii)..fQP y(z) + ttrilog(z - zr) is analytic 
at Z = zr' Obviously ir is an integer and so is t(m 1' + t1') 
and i(m r - tr). Further, - mr$;ir$;mr• 

We have proven the necessity of (i), (ii), and (iii). 
Formally, the functions 1J; and cp given in (8) satisfy 
lj!2+qpcp2=qqj' We must show that, in light of (i), (ii), 
and (iii), above, lj!(z) and cp(z) are each entire. 

The only places- where analyticity must be checked 
are at the zeros of qPql' At any Zj which is a zero of q 
we see that by (8) we have 

1J;(z) == - q%(- l)"j(.J(jp)-l sin{.J(jp[y(z) - nj rr(..f(jj)tl]}) , 

which is analytic at Z = Z j by (i). Also 

cp(z) = ...JP-jqj (- l)nj cos{v1)q[y(z) - nj rr(v1)q)-l)}, 

which is also analytic at z=Zj' At any point Zk which 
is a zero of p we have 

and 

cp(Z) == ...Jp-lql (- 1)1 k+1 sin{..f(jj)[ y(z) - (l k + irr)( ..frjj)-1 n. 
Thus 1J;(z) and cp(z) are analytic at each point Zk by (ii). 
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At each pOint zr, which is a zero of ql' we have, set
ting ...J([p y(z) + ttr i log(z - z1') equal to y r(z), 

lj!(z) = - (2i)-1% «z - zir/2 exp(iy1'(z» 

- (z - zr)-tT/2 exp(- Y1'(z»)) 

and 

cp(Z)=t...JP-lql [(z - zT)t/2 exp(iyr(z» 

+ (z - zr)"tT/2 exp(- iYr(z»). 

Since y T(Z) is analytic at Z == zr and (z - z1')T is analytic 
at Z==ZT if T=HmT+l r) or HmT-lT), we see that lj!(z) 
and cp{z) are each analytic at z=z ... 

To see (iv) note that .J(jp Y equals log(lj! - i..f(jjj cp) 
- log(i -f{j(h). Thus..f(jj) y is unique up to an integral 
multiple of 2rri. This proves Theorem III. 

We shall next prove Theorem IV. We shall show the 
existence of a polynomial/ell such that for some a in C 
which is not a zero of pqqj, and each j, k, and r as in 
Theorem III, 

(a) r j [pet) q(t) ]1/2[s(t) ]-l/(t) dt == nJ1T, 
a 

and 

(y) ..;pq (s)"1 has a residue of ttT i at Z == z,.. 

(To be definite let each path of integration be the 
straight line segment between the two point. We will 
choose the point a such that no two zeros of Pqql lie on 
a common line which also contains a. ) 

We claim that 

Yj(z)==(..;pqt1 !.z [p(t) q(t)]1/2[s(t)]-lt(t) dt 

will satisfy (i), (ii), and (iii) of Theorem III. [Certainly 
Yt(z) will be analytic except for arbitrary cuts from each 
zero of qPql to z == 00.] At each zero Zj of q, for all 
z*Zj but sufficiently close to Zj' 

Yl (z) - n j rr(..;pq)-l 

= (-fjj(j)-1 Jzz [p(t) q(t) ]1/2[s (t) ]-1 t(t) dt. 
J 

As one may check by expanding the integrand as a frac
tional power of z - Zj times a Taylor series in Z - Zj this 
shows that Yl(z) -nj 1T(..f(jj)-l is analytic at z=Zj' At Z=Zk 
the exact analog is true. Next we shall check the points 
Z=ZT' We notice that 

(..f(jjj)"1 !.Z {[pet) q(t)Jl/2[S(t)]-1/(t) _ ttri(Z - zr)"l}dt 

is analytic at Z = Z T' since the integrand is analytic 
there. Thus y(z) - tilT log(z - ZT)(..f(jjj)-l is analytic at 
z=z ... This proves that we need only show that (a), (m, 
and (y) can be satisfied by some polynomial/. 

Suppose that we have indexed the set of Zj and Zk by 
zU' Then it will suffice to find a collection of polynomi
als tu such that 

lazu [P(t)q(t)]1I2t"1(t)dt=6:1, (10) 

where 6:; is the Kronecker delta. Assuming (10) set 

/='E cui .. +'E itAq(zr) p(zr»)1/2 s(z}{z - zr)"l, 
U T 
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where 

and 

cu= - LBu :B itri[q(zr) ]1/2s(t)(t - zr)-1 dt + bu 
T 

bu=nj1T if zu=Zj, 

bu=(lk+t)1T if zu=Zk' 

Thus (a), (tl), and (y) can be satisfied if we can satis
fy (10). We wish to pick the point a so that no two of the 
I Zu - a I are equal and so that a is not on any line contain
ing two distinct zu's. (These conditions can be satisfied 
by choosing a to be off of a finite number of lines.) Now 
let us change variables, sending the point a to zero and 
each Zu into zu- a* 0, which we shall denote by Zu in 
what follows. We wish to show that the matrix 

(foBU [p(t)q(t)J1/2 tkdt), 

o ~ k < 00 and 1 ~ u ~ N (where N is the number of distinct 
zu's) has rank N. If the rank is N then there exists a 
nonsingular matrix of the form 

(fu[P(t)q(t)J1/2 tkldt), 

1 ~u ~N, and 1 ~l ~N, for a set of distinct nonnegative 
integers kl' Then there would exist constants dl,ut' 
1 ~ u1 ~ N, such that each 

j~BU [q(t)p(t)J1/2 (y dj,u/I) dt= 6:1• 

Settingfu1 (z) = 1;1 dl,U1Zkl we would be through. 

Suppose that the matrix above does not have rank N, 
then there exist complex constant c1' ••• , CN, not all 
zero, such that 

N 
(BU:B c [q(t)p(t)]1/2 tkdt=0 

Jo ""1 u 

for k=O, 1,···. 

We may change variables to conclude that 

N 

fo1"6 KJq(tzu)p(tzu)]1/2tkdt=0 
.=1 

for l?= 0,1,···. This will now be shown to be impossi
ble unless Hi) '=~=1 KJq(tzu) p(tzu)J1/2 '= O. On [0, 1J we 
may uniformly approximate the real part of ~ (t) by a 
sequence of polynomials with real coefficients ~n(t) by 
the Weierstrass approximation theorem. Then 

O=limR(!ol Hi) ~n(t)dt) 
n-~ 

=1,t.~fo1 R[W»)~n(t)dt 

=j!{R[W»)}2dt, 
o 

where R(z) denotes for each complex z the real part of 
Zo Thus R[Hz»,=O on [0,1]. Similarly, one may show 
that the imaginary part vanishes identically. 

We shall next prove that the [q(tz.,)p(tz.,)]1/2 are linear
ly independent functions over C. Suppose, first, that not 
all of the zeros of qp are of even multipliCity. Let z"1 
denote that zero of odd multiplicity having least abso
lute value. Let Zu denote, among the zu's with Ku* 0, 

. 2 
havmg largest absolute value. Then 
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[q(tZ"2)P(IZ"2»)1/2 has a branch point, ZUt z;~ which no 
other [q (tzu) p(tzu) ]1/2 possesses. Thus in this case lin
ear dependence is impossible. 

The sole remaining case is where [q(l) pel) ]11 2 = v(l), 
a polynomiaL Now we must see if the functions v{lz.,) 
can be linearly dependenL Set vet) = LbO e j Ii where 
m"" N. If no e j vanishes then our dependence relation 
would imply that every 

for 0 ~ j ~ N - 1. By the nonvanishing of the Vandermonde 
determinant this is impossible. Hence the only remain
ing case is when some of the e / s vanish. Our present 
zu's are of the form Zu - a where the point a was chosen 
to be off of a finite number of lines. We wish to see that 
if we also choose a not to be anyone of a finite number 
of points we could assume no e j vanishes. Set vet) 
= IT!1 (t - zu)/U, for a set of positive integers lyo Then in 
terms of our original zu's we have vet) = IT~=1 (I + a _ z) lu, 
choosing the point a such that v(O) v(1) (0) .•• vIr) (0) * 0, 
where Y=L~I.lu, we may assume, above, that no ej=O, 
This proves Theorem IV. 

Proof of Theorem V: We use the formula 

";p(z) q (z) y(z) = (fa B ";p(l) q(l) [s (t) ]-1 f(t) dl) + (fpq) g, 

where g is an entire function. Now 

..; p (ll q (t) [s (t) ]-1 f(t) 

has an expansion about z = 00 in descending integral 
powers of l, if 6 is an integer, or descending odd inte
gral powers of t1l2 , if 6 is not an integer. Thus the 
integral is of the same form as the integrand, except 
that if 6 is an integer there may now be a logz term, and 
if 6 is not an integer, there may now be a constant term. 
If 6 is an integer set the terms where the power of z is 
nonnegative equal to G. If 6 is not an integer set the 
terms where the power of z is positive equal to G. We 
may find a series h, in descending integral powers of 
z, such that 

if 6 is an integer, or 

if 6 is not an integer. Let the polynomial g be defined 
to be such that h - g vanishes at z = 00. Then 

fpq g= (F - G) + 0(Z6-1), 

if 6 is an integer, and 

if 6 is not an integer. With this choice of g we obtain 
the desired asymptotiC form for fpq Y, up to an error 
which varies according to the cases. If /) is an integer, 
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the error is the larger of O(zO-l) and O(logz). If Ii is not 
an integer the error is the larger of O(zO-l) and 0(1). 
This proves parts (i), (ii), and (iii) of Theorem V. We 
next prove part (iv). 

By the remark after Theorem IV we see that we must 
have 

..;pq y 1 - ..;pq Y2 =..;pq g 

where g is entire. Also..;pq g is asymptotic to O(zO-l), 
o (logz) , or 0(1), as the case may be. In the first and 
thirds cases, since Ii> 0, 
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lim Ig(z) 1= 0, so g= 0. 
n- oo 

Also, in the second case, if Ii = 1, the same conclusion 
holds. This proves Theorem V. 

IJ. L. Lebowitz and O. Penrose, J. Math. Phys. 13, 604 
(].972). 

2Consider the function E(z) given in W. K. Hayman, Meromor
phic Functions (Oxford U. P., Oxford, 1964), p. 81, and set 
El (z) =E(z+Ki) for any real K with I K I > 7r. 
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The utilization of the Siegert resonant states as a natural basis for the scattering process has been 
constrained by the lack of a convergent superposition formula. This paper presents such an expansion of 
the exact scattering wavefunction over the s-wave Siegert resonant states for finite range potentials. Any 
integral property of the scattering wavefunction can then be calculated from the resonances. 

INTRODUCTION 

Since the early days of the quantum theory of scatter
ing, metastable states have served as an appealing 
explanation for the structure observed in cross sec
tions. In the discussion of some specific physical inter
action, say 11 +p or e- +H2' these compound states of 
the target and projectile are associated with a pole of 
the S matrix. Breit and Wignerl gave a simple model 
formula that describes the cross section near such a 
resonance; 

11 r 2 

0'''''-k2 (E-E )2+1r2 
res 4 

(1) 

where r is the width of the resonance and 2/r is the 
lifetime of the resonant state. This important one-level 
formula is a satisfactory description when the widths 
are narrow compared with the energy separation be
tween the resonances. In the more general case one 
expects to use a superposition of Breit-Wigner terms 
with relative phases chosen in some yet unspeCified 
manner. 

Regge2 provided a remarkably simple albeit slowly 
convergent3 expression for the S matrix by a 
Weierstrass-Hadamard infinite product over all the 
resonances 

. (kn + k) 
S(k) =exp( - 2lkro)IJ (k

n 
_ k) , (2) 

where ro is the actual radius of the potential. Regge's 
formula remains correct regardless of where the reso
nances are located, provided the potential is of finite 
range. This formula gives an expansion over the reso
nances from the purely mathematical properties of the 
S matrix, but it camouflages the physically appealing 
role of the reSOnances as transient intermediates for 
the scattering process. 

The objective here is more than just to describe the 
shape of cross section or S matrix in terms of disper
sion formulae such as (I) and (2). Rather, the basic 
ideas are; (i) the resonances are compound states, (ii) 
the incoming particle has some amplitude to populate 
each of these states, and (iii) it is the subsequent decay 
of the res:mant states that is observed 

(3) 

incoming - resonances +unscattered. 

i 
decay 
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The problem at hand is to characterize the resonance 
energies and resonant states as manifestations of the 
potential, then to describe the scattering process as 
mediated by the resonances. 4 

In particular, we need to develop some kind of super
position prinCiple for resonant states: 

(4) 

This would presumably illustrate that once a given 
wave function is expanded, any property could be written 
in terms of the simpler and decoupled properties of the 
resonant states themselves: 

property [<P.iven J - properties[ <Pnl. (5) 

Such a superposition principle we now set out to find. 

THE RESONANT STATES 

Kapur and Peierls5 suggested that the eigenvalue 
problem 

1i2 

- 2m 8;(r)+V(r)8n{r)=En8n(r), O-"'r-"'ro, (6) 

8n(0) =0, 8~(ro) = ik8n(ro) 

for a potential of finite range ro would provide the s
wave resonance energies as eigenvalues En = E reS + (il 
2)r. It is crucial to note that each solution behaves as 
an outgoing plane wave at the right-hand boundary, but 
that k is chosen to match the momentum of the 
incoming particle we wish to describe. The resulting 
eigenfunctions [8n ] are called the Kapur-Peierls states. 
A superposition formula was derived from these states 
for the exact scattering wave function 

(7a) 

Whence a dispersion formula for the transition matrix 
was available: 

fi2 . e~(ro) 
T = 2m exp(- 2lkro)~ (En - E)N

n 

1 
Ii sinkro 

xexp(- ikro), (7b) 

where Nn is the normalization integral Nn = J;o 8~( r) dr. 

This model has attracted attention for two reasons. 
First, it appears to offer a technique for finding the 
resonances for a variety of potentials, 6 even for prob
lems with many particles. 7 Second, the expansions (7a) 
and (7b) over a completeS set of resonant states appears 
to provide a description of all of the properties and 
structures of the scattering process in terms of the 
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resonances. Unfortunately there is one principal diffi
culty. The Kapur-Peierls formula (7b) suggests that the 
S matrix should have poles at the Kapur-Peierls ener
gies. Although these energies may in some cases be 
close to the actual poles, they are not coincident. Indeed 
the poles of the S matrix are characteristic of the poten
tial itself, whereas the Kapur-Peierls energies depend 
on the incoming momentum k, and in addition upon the 
choice of roo This is true even when r o is chosen out
side the actual range of the potential! 

Siegert9 noticed this difficulty and suggested an alter
native eigenvalue problem: 

(8) 

We call this the Siegert eigenvalue problem; the eigen
values are called the Siegert energies or Siegert poles; 
and the eigenfunctions are called the Siegert states. 
Use of the resonance momentum in the plane-wave 
boundary condition alleviates some of the unsatisfactory 
features of the Kapur-Peierls description. In particular 
one can easily show9 (i) that the Siegert energies are at 
the poles of the S matrix, (ii) that they are independent 
of both the actual scattering energy and the joining 
radius (as long as it is chosen outside the actual 
potential), and finally (iii) that the bound states are just 
special solutions of the Siegert equations (8). 

Siegert also found a one-level formula that gives the 
correct residue of the S matrix at the resonance pole 
and reduces to the Breit-Wigner formula when the 
width r is small. However, he was unable to provide 
a complete description of the scattering process due to 
the lack of an expansion over the resonant states. Any 
attempt to remedy this situation is complicated by the 
nonorthogonality of the Siegert states (which arises 
from having the boundary condition depend on the eigen
value), and by the rather slow convergence of the 
reSidues. These are the difficulties to be overcome 
below. 

THE TWO-COMPONENT WAVE FUNCTION 

We first rewrite the Siegert s-wave eigenvalue prob
lem in a more dimensionless form: 

- cp~' + UCPn =k~CPn' CPn(O) =0, cp~(ro)=iknCPn(ro)' 
(9) 

k~ = (2m/If)En , U = (2m/If) V. 

Unfortunately, the literature of such problems with the 
eigenvalue in the boundary conditions is meager. How
ever, Friedman lO discusses two similar problems: 

_cp"=k2cp, cp(O) =0, cp'(I)=ecp(I), 

and (10) 

- cp" = k 2cp, cp(O) = 0, cP '(1) = kcp(I). 

A further description of these two and other related 
systems can be found in Ref. 3. 

An important suggestion of the work in Refs. 3 and 10 
is that we consider writing the solutions to Eq. (9) as 
two-component wave functions 
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_[cp~I)(r)J 
~n- . 

cp~2) (r) 
(11) 

Then the eigenvalue problem is rewritten as 

[CP~2)" (r) ] 
L~"= =ikn~n' 

cp~I)' (r) + .co U(x)cp~I)(x)dx (12a) 

with the boundary conditions 

cp~n)(o) = 0, cp~I)(ro) = cp~2)(ro). (12b) 

The upper component cp~ll(r) from a solution <I>n of Eq. 
(12a) can be seen to be a solution to (9) by differentia
tion of the lower components of (12a) 

In this two-component space we define the inner 
product by 

(if,~) = J;O(lji(1)cp(1) _lji(2)cp(2» 

where 

(13) 

(14) 

With the boundary conditions (12b) and the inner product 
(14) we can find the adjoint operator Lt: 

[

cpw'(r) - U(r)J; CP(2)(X)dX] 
Lt<I>= . 

cp(I)' 
(15) 

This defines a new set of adjoint eigenvectors (with the 
old eigenvalues) 

(16) 

We notice further that if the boundary conditions (12b) 
are satisfied, then 

L2~n = = - k~~n' [CP~I)"_Ucp~l) J 
cp~2)" + to U(x)cp~2)'(x)dx 

(17) 

Equations (12), (15), and (17) show that the upper com
ponents of {~n} and {~~} can be chosen to be the same 
and that this function, CPn=cp~I)=cp~(I), is the physical 
Siegert resonant wavefunction. The lower components 
are yet without physical interpretation. 

Toward the goal of a superposition principle, it will 
be necessary to evaluate the inner product of ~~ with 
~ I' As might be expected the choice of the form of the 
inner product and the relation of Lt to L make this 
especially simple: 

i(kn - k /) <~~, ~ I) =(Lt~~, ~ ,) - (~~, L~ ,) = 0, (18) 

so that either <~~, ~ I> = 0, or k, = kn • The solutions are 
in general nondegenerate, 4. so we have 

(19) 
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where 0nl is the Kronecker delta and NI may be con
sidered the (not necessarily real) norm of the state. As 
is customary the normalization constant could be ab
sorbed into the wavefunction, yielding N/ = 1, except 
that a Siegert state could possibly have a norm of zero. 
Indeed we anticipate null vectors and degenerate roots 
to appear simultaneouslyll but only for special values 
of the potential strength. 

Now we have our superposition principle. To expand 
a given two-component vector 

(20) 

we only need to calculate 

(21 ) 

EXPANSION OF THE PHYSICAL SCATTERING STATE 

For any energy there exists a function lJik satisfying 

-~I~+UlJi.=k2<J!k' '-Pk(O) =0. (22) 

This (i}!k) is the exact scattering wavefunction. The 
principal goal of this work is to find a set of coefficients 
C{ /(k) such that 

),k(r) =2:: fin(k) 'Pn(r); (23) 
n 

that is, to express i}!k as a superposition of Siegert 
resonances. 

The function 'h specifies only the upper component of 
the vector to be expanded: 

(24) 

At this point it does not seem too important what lower 
component is used. Physically, we are only interested 
in the upper component, at least for now. There are two 
difficulties. First, even though the upper component of 
vk seems independent of the lower one, the expansion 
coefficients will depend on both components through Eq. 
(21). This is the same as saying that there are many 
sequences of coefficients {fin} that give the same ex
panded upper component, or as noted by More and 
Gerjuoy, 13 the Siegert basis is overcomplete. The 
series (23) will converge very slowly or not at all if the 
lower component is not chosen with care. Second, the 
expansion (23) will be essentially useless if we actually 
have to evaluate integrals involving the yet unknown i}!k' 
If the Siegert states are in fact a natural basis for the 
scattering problem, the stationary wavefunctions, lJi. 
would be expressable directly. That is what Kapur and 
Peierls tried to do. 

A little experimentation with Fourier series convinces 
one that the attempt to expand a function that does not 
satisfy the same boundary conditions as the basiS set 
produces slow and nonunijorm convergence (see also 
Ref. 3). The problem is at its worst when expanding in 
Siegert states. The Siegert states, even when nor
malized to unity are not bounded with respect to kn • The 
point in the interval at which convergence will be the 
most difficult to obtain will be r = r 0' since there the 
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Siegert states will in general by the largest 
(I 'Pn(ro) I - exp[ I 1m (kn) Iro]). 

It was found3 that an expansion over Siegert states 
[Eq. (20)1 will not converge at all unless at least three 
conditions are met: 

(1) j(1)(O)=O, 

(2) j(l)(ro) = j(2)(ro), 

(3) j(l)'(ro) = j(Z)'(ro). 

(25) 

These conditions amount to making the vector to be ex
panded as continuous as possible at the right-hand 
boundary. For the problem at hand, the lower compo
nent of V k is uniquely defined if "k is required to satisfy 
both (25) and the very useful relation 

This equation is a relatively natural choice since its 
upper component is identical to Eq. (22). 

All of this gives 

".= [lJik ] 
aj"lJik +bj"li!k +c 

where IJ!k satisfies the conditions 

-~~/+U~k=k2~k' ~/(O)=O, 

(26) 

(27) 

(28) 

and a, b, and c are constants to be determined from 
(25) and (26). Having chosen "k we need only evaluate 

fin(k) =<;p~, "kIINn' (29) 

To evaluate fin we use a trick much like that used by 
Kapur and Peierls: From (16) we have 

;pt 
n (30) 

so that 

1 
fin = (k2 _ k~)Nn W<;p~, V kl + <L t2;P~, V k) }. (31) 

But now 

<Lt2;P~, Vkl =<Lt;p~, L"k) -[[Lt;p~rlli}!k2) - [Lt;P~J<2)i}!~I)rc 
o 

(32a) 

Next 

<Lt;p~, Lvk) = <~~, L2vk) - ['P~(l )[LVk]<2l - 'P~(2)[LVk J<') l~o 

= <;P~, L2v k) - biPk(0)'P~(2)(0). (32b) 

Finally, using (31) and (26) 

- bli!k(0)'P~(2>CO) _ - biMO)<p~(O) 
W - k~)Nn - W - k!)Nn( - ikn) 

(33) 

The term - bli!k(O) is unknown until we have solved for 
the exact scattering wavefunction. But it is independent 
of n, so it will be replaced by A(k) and treated as a 
normalization constant to be determined later or 
ignored altogether. Thus the expansion formula becomes 

(34) 

This is our superposition formula. It specifies how 
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TABLE I. Some Siegert s-wave eigenvalues for the finite 
square well, depth U=-!, radius ro=1. 

n(al Rek. Imk. Rek~ Imk~ 

0 0.0 -1. 6506 0.0 -1.4914 
1 4.0993 -2.6555 4.1423 -2.6279 
2 7.4268 -3.1404 7.4553 -3.1284 
3 10.661 - 3.4642 10.682 -3.4573 
4 13.859 - 3.7083 13.876 -3.7038 
5 17.040 - 3. 9044 17.054 - 3. 9012 
6 20.210 - 4. 0684 20.222 -4.0660 
7 23.373 -4.2094 23.384 -4.2075 

(alThe corresponding resonances with n< 0 satisfy k.=-k! •• 

the exact stationary state lJ!k is to be expanded over the 
Siegert resonant states <P •• Aside from the trivial nor
malization factor A(k), the coefficients have a simple 
dependence on k, 

(35) 

The only significant property of A(k) is that A(k) 
- (k2 - k~) as k - k I' so that l/J~ - <p I as k - k I just as we 
would want. 

We note as well that the nonphysical lower compo
nents of both 'i'k and 41. have disappeared from the 
formula. Having this principle of superposition, we 
can now proceed to calculate the exact wavefunction at 
any energy from Siegert states. The various properties 
of the wavefunction can also be calculated, such as the 
phase shift for which we would use the Lippmann
Schwinger equation to avoid convergence difficulties in 
taking derivatives. 

THE SQUARE WELL 

The above description of the scattering process is not 
an attempt to give yet another dispersion formula. It 

-, 

o 

FIG. 1. ExpanSion ¢k(r) =~~NO!n<Pn(r) over square well Siegert 
states for k= 8. Dashed line indicates the exact solution; the 
solid lines represent the partial expansion to ± N. The imag
inary parts of the partial expansions cancel when the terms 
O!n<Pn and Ci._.<p -n are included together. 
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was hoped that the Siegert states would provide a practi
cal, discrete (to a good approximation finite), and 
calculable basis with which to describe scattering 
events. Along this line it is necessary to consider an 
example. In fact, the example has been the fulcrum of 
the theory. 

SpeCifically we consider 

i_to O,,;r,,;ro=l 
U(r) = 

0, r >ro 
(36) 

This is a rather weak potential; the resonances are far 
from the real axis; and therefore the theory should be 
hard pressed. The Siegert states are 

L
Sink~r ] 

41 = kkk' , 
n . n , . n n I 

- t k~ cosk.r + (k~ -;;:: )COSkn 

(37a) 

L
ink~r J .-.t_ 

'"'.- k' 
-i k· cosk~r 

• 
(37b) 

where k~2 = k~ - U = k! +~. The resonance eigenvalues 
satisfy [from Eq. (12b) J 

k~ cosk~ = ik. sink~, (38) 

which can be solved by Newton's method or as in Ref. 
4a. A few of the calculated Siegert resonance eigen
values are given in Table I. 

To accomplish the expansion as in Eq. (34), we will 
need to know the norm, N. = < q,~, 41.) = 1 + ilk., and 
<p~(0) =k~. So then 

l/Jk(r)=A(k)~ k2~k~ (-ikn)~i+i/kn) sink~r. (39) 

Comparisons of partial expansions of this uniformly 
convergent series '4 with the known wavefunctions are 
shown in Figs. 1 and 2. The appropriate value of A(k) 
was separately calculated in each case. 

<LJ 
Cl 
=> 
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..J 
"-
%: 
a: 

1.5 r-~-----------------, 

EXPANSIDN K=O.4.B 

1.0 

0.5 

!/"' 

'-.\ "', ~/~ 
------- '\\ I! ---- : -- , --- : 0.0 

, 
-0.5 

-1.0 

\ 
\ 
\ 
\ 

-1.5 '--__ l-__ L-__ L-_--.JL-_~ 
0.0 0.2 o.~ 0.8 1.0 

R 

FIG. 2. Square well Siegert expansion ¢k(r)=~~60!n<P.(r) for k 
= 0 (medium dashes). k = 4 (long dashes). and k = 8 (solid). 
Shorter dashed lines represent the partial expansions. 
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FIG. 3. Siegert expansion of 0 0 and 0'0' The singular behavior 
near k = 71, 271 is due to the division by sin(krol in the 
Lippmann-Schwinger evaluation of the phase shift. As indi
cated, the solid lines show the exact values, the dashed lines 
show partial expansions. 

As a final illustration, we have in Fig. 3 plots of the 
phase shift 00, calculated from the Lippmann-Schwin
ger equation14 along with the cross section 0'0 = (1T /k2) 
x sin200, for various numbers of exapnsion terms. 
The exact result is shown for comparison. We note the 
excellent agreement even with only a few terms in the 
expansion. 

CONCLUSION 

This paper has discussed an expansion of the s -wave 
scattering wavefunction over the Siegert resonant 
states, which is uniformly convergent at least for the 
finite square well. This is not to be viewed as the 
derivation of a dispersion formula but rather as the 
beginning of a calculational device. If the Siegert states 
turn out to resemble the bound states as much as it 
now appears that they do, then all of the powerful and 
successful approximation techniques that have been 
used in bound state quantum mechanics may then be 
used for scattering states. Specifically in view is the 
calculation of the Siegert states for a molecular sys
tem, such as N2 +e, by some kind of self-consistent 
field procedure. The scattering problem is then just a 
rigorous expansion over the bound like Siegert states. 
No fictitious "potential scattering" term or matching 
at the boundary would be required. 

The sense of accomplishment that might be expected 
must be deflated by one important observation. All of 
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the results presented apply, as yet, only to potentials 
of finite range (or at best dying faster than any expo
nential). Few physical problems have potentials of such 
short range. But resonances are observed nevertheless. 
The experience gained in this research indicates (to the 
author at least) that the work now in progress on Siegert 
states for long-range potentials will bring similar re
sults. At that point the theory will have come to the 
motivation: electron-molecule scattering. 
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The quantum mechanical network model of electrons in solids as introduced by Montroll is used to 
construct a multiple·scattering formalism for scattering in slightly aperiodic lattices. We examine both the 
case of Bloch electron scattering and diffractive scattering (as applied to LEED) from surfaces. In the 
former case the resulting equations are completely analogous to those derived by Koster and Maradudin in 
their analyses of the scattering of electron and lattice waves by defects. In the latter case the differential 
cross section functionally resembles Fraunhofer diffraction in optical systems, and is explicitly dependent 
upon the atomic geometry and the atomic potentials of the surface. All computations are analytic. Since 
qualitative agreement with experiment is excellent, our results seem to imply that the geometric structure of 
a material dominates the electronic character of a scattering system. 

INTRODUCTION 

The theory of scattering has been employed with much 
success in the investigation of the nature of matter. As 
first developed by Lord Rayleigh to explain the color of 
the sky, it has since been used as an intricate probe 
into the structure of liquids and solids. Up until re
cently there have been few experimental procedures 
available to study the electronic, vibronic, and geo
metric properties of surfaces since it requires quite a 
delicate interplay between the magnitude of the particle
surface interaction and the energy (and/or type) of the 
incident particle. 1 If the strength of the interaction is 
too weak, as it is for x rays, the incident particle may 
only be used to measure the bulk properties. If the 
interaction is too strong and the incident particle has a 
large mass, or is highly energetic, then the surface is 
prone to damage. 

Two techniques that have found widespread applicabil
ity are elastic low energy electron diffraction (ELEED) 
and inelastic low energy electron diffraction (ILEED). 
ELEED is used as a probe of atomic geometry and the 
surface vibrational properties of macroscopic crystal
line materials, whereas ILEED measures the disper
sion relations for surface excitation spectra. 

The first LEED experiment was reported by Davisson 
and Germer in 1927.2 In recent years the physics of 
this scattering process seems to be well established. 
As an incident particle approaches the lattice it induces 
a surface charge resulting in the emission of surface 
plasmons. This inelastic electron-valence electron in
teraction contributes to forward scattering with the dif
fractive phenomenon caused by electron-ion core scat
tering. Thus, as most of the electron scattering occurs 
within a distance of one half the inelastic electron mean 
free path from the surface, that is, from 1 to 10 layers 
from the surface, this results in the total scattered 
intensity being modulated via the inelastic processes. 
The two most useful incident particle energy ranges for 
surface crystallography occur for 25 eV "" E "" 500 eV. 
ELEED is most surface sensitive in the former energy 
region. Since the elastic and inelastic cross sections 
are comparable in magnitude, the intensity profiles ap
pear highly dynamical in character with complicated 
secondary peaks (fine structure) occurring at all ener-
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gies, but most pronounced near the Bragg angles. This 
behavior is indicated schematically in Fig. 1. 

In this paper we present a network formalism based 
upon a model of electrons in solids as introduced by 
Montroll and co-workersS. 4. 5 to describe the interaction 
of an assembly of scatterers in a nearly periodic mate
rial with a wave. The incident scattering particle may 
be of any type, i. e., electrons and x rays, as long as 
it interacts with the electron clouds of the scatterer. 
The scattering is postulated to take place on a topologi
cal network of atoms or molecules in such a way that the 
scattered wave may only propagate along the bonds of 
the network, that is, along those lines connecting atoms, 
nodes, together. This concept gains credence from the 
work of Keller who by using the multiple scattering 
formalism developed by Lloyd showed that above muffin 
tin zero the greatest angular cross sections are along 
the bonds of a solid, be it crystalline or amorphous. 6 

We begin in Sec. 2 with a short description of the 
quantum mechanical network model of electrons in 
solids. Section 3 contains a discussion on the use of the 
lattice Green's function in obtaining the band structure 
of a perfect solid with a small number of defects. For 

.... , 

~" 
(a) 

100 

(b) 

: K" : (00) SPOT 
"'i 
K" : K" + 9 (hk) : 

(hk) SPOT 

"PRIMARY BRAGG" 
PEAKS 

1i2 n7r 2 
E(n)=2m(-d) 

FIG. 1. (a) Intensity pattern: Fixed incident beam energy. 
(b) Intensity profile: Energy dependence of the intensity of a 
given spot. 
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4 

FIG. 2. An arbitrary network of atoms, 1,2, ••• ,i, ... ,j,···, 
connected by bonds bij of length li). 

the purpose of the subsequent discussion the concept of 
a surface defect will be introduced. In Sec. 4 a for
malism is constructed for the multiple scattering of a 
wave off of a finite number of defects in an otherwise 
perfect crystal and is akin to the Lippman-Schwinger7 

development of scattering theory. No Born approxima
tion is involved. The resulting scattering equations are 
completely analogous to those derived by Koster and 
Maradudin in their analyses of the scattering of elec
tron and lattice waves by defects. 8, 9 The total wave
function after the scattering phenomenon is made up 
of an incident and scattered wavefunction, the latter 
containing as factors the interaction of the incident 
wave with the defect and its subsequent propagation to 
other points in the solid. This Green's function propa
gator will be shown to asymptotically resemble an out
going wave whose character is determined by the group 
velocity of the electron. As an example toward the use 
of this procedure a sample T-matrix calculation for a 
lD and 3D s. c. c. lattice with a surface defect will be 
performed in Sec. 5. Finally, Secs. 6 and 7 will dem
onstrate how the lattice Green's function may be em
ployed in the study of the surface structure of solids. 

2. BASIC NETWORK EQUATIONS AND BAND 
STRUCTURE 

Recently a network model of electrons in solids has 
been introduced by Montroll and his colleagues in which 
the electrons are restricted by nonconstant potential 
fields to move along the bonds of a periodic network of 
atoms. 3-5 The network is given the same topological 
pattern with the same lattice spacings that would rep
resent its crystallographic characterization. If we 
associate the Schrodinger equation with each bond of 
the network, then a solution which is satisfied every
where on the network exists only if the wavefunction and 
its derivative is everywhere continuous. This statement 
implies that for the network of atoms depicted in Fig. 2 
if <pii(Xij) is the wavefunction along bond b lJ , 0 ~xlJ ~ Iij' 

then 

(2.la) 

and 
",tiil _ ",lii2 _ ••• _ ",1iia (2.lb) 
'I'(D) - '1'(0) - - '1'(0) 

where jt. ... ,j a is the set of f3 nodes to which node i is 
attached. 
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It should be noted that (2. la) only holds true for 
atoms with dimensions of measure zero, i. e., atoms 
represented as points. Then (2, lb) can be replaced by 
its graph-theory counterpart, the conservation of flow. 10 

Physically, this condition can be thought of as the con
servation of probability or momentum at node points 
and in the stationary state can formally be expressed 
for arbitrary atomic potential V(x) as3, 11. 12 

2: <P' (jp) I,.node = 0 (2. 2) 
(Ip) 

where the sum is taken over all nearest neighbor node 
points j p to j. The energy band structure is then ob
tained by invoking into (2. 2) the appropriate periodic 
boundary conditions which correspond to the transla
tional symmetry of the lattice. In such manner it can 
easily be verified that the band structure for a d
dimensional, 1 ~ d ~ 3, s. c. c. lattice having bond 
length I can be found from the form factor equation (the 
equation relating the wavefunction at one node point 
with the wavefunction at connected node points) 

2dF(E)<P(j) '" 2: <POp) 
(Ip) 

(2.3) 

where the functional form for F(E) is potential depen
dent, E being the dimensionless energy variable, 
E ook2/2. 3 

For convenience we choose as our atomic potential 

(2.4) 

since this has the property that as the depth of the po
tential becomes large one obtains a tight binding situa
tion and as the potential vanishes and the number of 
node points increases, one obtains the Sommerfeld free 
electron model. y may be thought of as a force constant 
and when expressing Vo as 

(2.5) 

one finds that the wavefunctions, for positive integral 
values of r, are elementary functions. For example, 
when roo 1 

<P(X) = a (COS(kX + Ii) - ~ sin(kx + 6) tanhyx) (2.6) 

a, Ii being the constants of integration of the Schro
dinger equation. F(E) is then 

(c2 _ s2 +cu - sv)/(l +cu + sv) 

where 

and 

tan8(x) '" ~ tanhex, with - rr < 8(x) < rr 

8'" 8(1/2) 

coo cos (kl/2 + 8) 

s = sin(kl/2 + 8) 

(2.7) 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

(2. 8e) 

(2. 8f) 

For k real, Eq. (2.3) will determine the allowable con-
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z 

FIG. 3. Surface defect caused by making a cut parallel to the 
x - y plane along the bond connecting atoms at positions j3 = 1 
and h ~N. 

duction band states, while for k imaginary it will deter
mine the bound state band structure. 

3. THE LATTICE GREEN'S FUNCTION AND 
SURFACE DEFECTS 

Upon expanding the s. c. c. form factor equation (2.3) 
we obtain for 

1D 2F(E)I/JU) = I/JU ± 1), 

2D 4F(E)I/J(h,h) = I/JU1 ± l,h) + I/JU 1,h ± 1), (3.1) 

3D 6F(E)I/JUbh,h) = I/JUl ± l,h,ja) + I/JU 1,h ± l,ja) 

+ U b j2,ja ± 1). 

The (±) refers to terms U + 1) and (j - 1). 

By invoking cyclic boundary conditions 1jJ{j + N) = I/J{j), 
where N is the triple (Nb N2, Ns) denoting the number of 
atoms along the unit vector directions (1, t, ~), the 
complete set of equations for every point j in our lat
tice may be written in matric form 

M>}I=O (3.2) 

where M is the connectivity matrix whose elements 
show how I/J{j) is associated to I/i{ja) via Eqs. (2.3) and 
(3.1), and >}I is a column vector containing all the ljJ(j) 
as elements. 

For example, the ID analog of (3.2) has 

2F -1 0···-1 
-1 2F -1 ...... . 

M= 
o ............. . 

(3.3a) 

-1 ...... -1 2F 

and 

(3.3b) 

The solution of this set of coupled equations is gotten 
by setting det I M I = O. In general, M is a circulant for 
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s. c. c. lattices of any dimension with periodic boundary 
conditions; thus, the elements of >}I must be of the form 

IjJIs) (j) =A exp [21Ti 6 S . j1 , 
Is} J 
1 2 

{S}=Sl,S2,Sa, Sj= N
j

' N; "'1, (3.4) 

with A being a normalization constant. Substitution of 
(3.4) into Eqs. (3.1), in the limit as N j - "", yields the 
d-dimensional s. c. c. disperSion relation 

d 

2dF(E) = 2 6 cosq,;, 
1=1 

(3.5) 

4>. being the Brillouin zone Wave vector with distribution 
in - 1T -'S cp -'S 1T. 

One may destroy the periodicity of our cubic lattice 
by changing atomic masses or potentials, by altering 
bond lengths, or by creating a "surface. " Rewriting M 
as Mo - Ml where Mo is the connectivity matrix of the 
perfect crystal, and Ml is the matrix containing the 
perturbative elements (defects) then (3.2) becomes 

M>}I = (Mo - Mt)>}I 

=0 (3.6a) 

and 

detM =detlMo - Mll 

= detMo det II - 21101Mli if detMo * O. (3.6b) 

Premultiplying (3. 6a) by MOl leads to the solution of the 
defect problem 

(3.7) 

MOl will be identified as the lattice Green's function in 
Appendix A. If the number of defect locations in the 
lattice is small as compared with the total number of 
node points, the s. c. c. lattice Green's function may be 
used to determine the effect of these perturbations on 
the electronic energy band structure and density of 
states via (3. 6b). 

The s. c. c. Green's function of dimension d is 

g{j) = 2.... ± exp[21Ti(L;ls} S· j)] (3.8) 
2N Is}=l/N dF(E) - O;{s} COS21TS) 

where the g{j) ;: MOl (j) are the elements of MOt. This 
function has been used extensively by Montroll and his 
co-workers5 to study a variety of defect problems, 
among those the interstitial and surface defect. A sur
face defect is caused by making a cut parallel to the 
xy plane along the bond connecting atoms at positions 
h=1 andh=Na, as depicted in Fig. 3. Thus, the 
periodicity of the structure has only been destroyed 
along the h direction. Due to this special symmetry the 
method used for solving the scattering problem from a 
periodic surface, as discussed in Sec. 5, will be very 
similar to the scattering from the end atom of a cut 
circular chain. 

Consider a 1D ring comprised of N atoms with a 
periodic atomic potential of the form V(x) = - Vo sech2yx, 
Vo and y being parameters determining the shape of the 
potential well, and create a defect by making a cut be-
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(a) 

I 
I 

• • • I • • • 
N-2 N-I N : 2 3 

I 
(b) 

FIG. 4. (a) Schematic drawing of potential V<X) = - 2-0 sech2'Yx 
applied at each node point. Wave functions and their derivatives 
much be continuous at connecting points such as 2. (b) Two 
free ends are created by cutting the bond between Nand 1. 

tween atom 1 and atom N, as illustrated in Fig. 4. M, 
thus has the form 

o 
o 

: ...... 2F········ 

o '" -1 
-1 

-1 2F 

(3.9) 

1) is a memory function depending upon V(x) and the de
tails of the cut. F(E) is the F of Eq. (2.3). Both func
tions are derived in Appendix B. From (3. 6b) 

det(I - MQ1Ml) 

( 

-1)g(0) +g(1) 0 g(O) +1)g(1) ) 
g\2) -1)g\1) 1 g\1) -1)g\2) 

=det 0 1 . 

-1)g(i) +g(O)' .... :.~ +g(1~ -1}g(O) 

_ det it -1)g(O) + g(l) g(O) -1)g(1) \ _ 0 
- \ -1)g(1) +g(O) 1 +g(l) -1)g(01- . 

. This leads to the coupled equations 

(1 +1)[g(O) - g(l)] = 1, 

(1)-l)[g(O)+g(l)]=l, 

= O. 

(3.10) 

(3.11) 

from which the localized surface state energy structure 
is determined. 
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Substitution of the result 

_(: -.1) (~1»)_ 
M1~-' • . -. . . 

- 1 1) l/J(N) 

(3.12) 

into (3. 6a) leads to the defect wavefunction 

l/J(j) =g(j -1)[1)l/J(1) -l/J(N)] +g(N - j)[1)?/J(N) -l/J(1)] 

(3.13) 

subject to the condition that g(j +N) =g(j) =g(- j), and 
where the subscript s has been dropped from the nodal 
wavefunction. 

That the 3D solution has exactly the same form as 
(3.12) can be demonstrated in the following manner. 
Creation of the surface previously described results in 
an equation satisfied by the components of (3. 6a) of 
the form 

6F(E)?/JU1>jz,h) - l/J(j1 ± 1 ,h,j3) - l/J(it,j2 ± 1,h) 

-l/JU1>h,j3± 1) = GU1>h,j3) 

where 

Ghh,h) = (ji3' N3[1)l/J(j1>j2, N3) -l/JU1>h, 1)] 

+ (ji3,t[1)l/JU1>h, 1) - l/JU1,h, Na)]. 

(3. 14a) 

(3. 14b) 

Due to the surface periodicity l/JU1>h,h) may be re
written as 

,/,(' . .) A [2 . (hn1 hn~\l "-(' ) (3.15) 
'f 11,12,13 = exp 1T1 1i; + M)J 'I' 13 . 

By inserting this into the Eqs. (3.14) we obtain 

2(3F- cos21Tnl _ cos21Tn~\ </>(j3) - </>U3± 1) 
N1 N2 ) 

= (jJ3' N 3[1)¢(N3) - </>(1)] + (ji3. 1[1)</>(1) - </>(N3)] (3.16) 

whose solution due to (3.7) is 

</>(j3) = :B g(ja - j~)G(j3) is 
=g(j3 - N3)[1)</> (N3) - </>(1)] +g(j3 -1)[1)</>(1) - </>(N3)] 

(3.17) 
where 

N3 

g(h) = _1_ :B 
2N3 '3.1 F nt• "2 - COS21TS N3 

(3.1Sa) 

and 

=3F- coS21Tnl _ COS21Tn2 
F n1."Z N N 

1 2 
(3.1Sb) 

To conclude this section, a few comments about 
periodic lattices, in general, should be made. As long 
as a form factor equation resembling (2.3) can be 
derived, the matric equation M~ = 0 can be solved, 
thereby determining the elements of~. For a periodic 
lattice ~ will always contain the translational symmetry 
of the reCiprocal lattice of the space group of the struc
ture. The Green's function can then be found by in
verting Mo. Green's functions for body and face centered 
cubic lattices with coordination numbers of eight and 
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twelve, respectively, are 

3D body centered 

3D Face centered 

4. SCATTERING OF BLOCH ELECTRONS FROM 
DEFECTS 

In Sec. 3 it was shown that the basic equation from 
which all the electronic properties of a crystal come is 

(4.1) 

Scattering of Bloch electrons from a crystal surface 
or from some other internal defect in the crystal may 
be studied by setting I/J = I/Jo + w, where I/Jo is an incoming 
wave and a solution to the perfect crystal matrix form 
factor equation, i. e., .'I1o>l!o = 0, and W is a scattered 
wave. Then (4.1) with the auxiliary perfect crystal 
condition becomes 

(4.2) 

or 

J'l-lt>l!o =- Mtn+Mon. 

Premultiplying the second equation of (4. 2) by MOt 
yields 

or 

n = 1l1QtMt>l!o +M{itMtn 

and by iteration 

= M{itMt>Yo + (M{itMt)2>l!o + 0'v1{i1Mt)3>l!o + .... 

(4.3) 

This series is analogous to the Born expansion to n. 
A formally exact solution may be written as 

n = MotT>l!o (4.4a) 

where 

T = M t + 1vlp'l-1QtT. (4.4b) 

The T matrix in (4. 4b), or transition matrix, is to be 
identified with the well-known T matrix of collision the
ory. Since this T-matrix equation contains the defect 
matrix Mb the scattering from the defect to any other 
lattice point is a multiple scattering phenomenon. 

We now show that the scattered wave w asymptotically 
resembles an outgoing wave. This discussion will be 
limited to the cubic lattices whose Green's functions are 
given by (3.8) and (3.19), although the general flavor of 
this argument is also applicable to lattices of other 
symmetry. The general cubic lattice Green's function 
can be expressed as 

gUbj2,j3) = C N
1

No N 
t t 2 3 
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(3.19) 

;: exp[2lTi(S1j/Nt +s2h1N 2 +S3hI33)] 
X SI.~.S3 c2F(E) - A(2lTs/Nb 2lTS/N2, 2lTS N 3) 

(4.5) 

where for 

s. c. c. 

ct=2, c2=3, 

(~) (2lTS2) (2lTS3) A(¢» = cos Nl +cos N2 +cos N3 

b. c. c. 

cl=8, c2=1 

2lTSI 2lTS2 2lTS3 
A(¢»=cos cos-- cos 

Nl N2 N3 

f. c. c. 

Ct=4, c2=3, 

2lTS1 2lTS2 2lTSI 2lTS3 
A(¢»=cos-N cos N +cos N cos N 

t 2 t 3 

2lTS2 2lTS3 
+cos"N; cosN;-. 

Defining x(j) =jta1 +ha2 +j3a3 as the position vector of 
the jth atom in the lattice, a; being the primitive trans
lation vectors of the lattice, and 

q = 2lT(S1ih + s2b2 + S3b3) 
N1 N2 N3 

where the b i are the primitive translation vectors of the 
reciprocal lattice, such that a; . bJ = I5;J and Si 
=1,2, ... ,N;, then 

exp[iq. xU)] = exp(2lTis· j/N). (4.6) 

Thus, (4. 5) may be rewritten as 

gU bh ,h) = 15i!r C IN ~N2N3 

(4.7) 

Using the integral representation of 

1 1foo 
----:- = -:- dt exp(ixt - 15t) 
x + zl5 z 0 

(4.8) 

and noting that for an asymptotic g(h,j2,j3) one can 
change the sum over S in (4.6) to an integral over cp, 
where the allowed values of cp lie in the first Brillouin 
zone of the crystal, i. e., - IT '" cP '" IT, then (4.7) 
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becomes 

g{j1>h,h) =. ~2)3 r d3¢!~ dtexp[iG(E, ¢)] 
ZCl 11 lBz 0 

(4. 9a) 

where 

G(E, ¢) =q. x(j) + [C2 F (E) - A(¢)]t (4.9b) 

and 

(4.9c) 

For large xU) the exponential under the integral will 
oscillate quite rapidly. By using the method of station
ary phase the greatest contribution from the integral 
can be determined. 

Setting 

(JG 
Tt=czF(E)- A(¢)=O 

and 

(4. 10) 

(4.10) 

one finds that the largest contribution to the integral is 
along the surface of constant energy and around the 
neighborhood of a point where the electron group veloc
ity is parallel and in the same direction to the pOSition 
vector. Thus, the scattering process occurs in the en
ergy bandS (Bloch electrons) of the material. We label 
the values of t and ¢ for which this occurs tm and ¢m' 

Expanding G(E, ¢) about the point (tm, ¢m) gives 

G(E, ¢) = ¢m - (t - tm)t (¢I - ¢.m) (JA(PI) I 
• =1 • a¢1 <I> =~ 

i "'im 

- t tm6 (¢i - ¢.m)(¢j - ¢Jm) 
i, J 1 

X a
2
A(p) I + ... 

a¢1 a¢i <l>1=<I>lm . 
(4.11) 

<I> j=1/J Jm 

All first order terms have dropped out due to (4.10). 

Introducing the relative variables T = t - tm, X = ¢m - ¢m 
and extending the range of integration for all variables 
in (4. 9a) over all space yields 

(. . .) exp(ipm) f f+~f f d d 
g J1>12,13 - iCl(211)3 _~ X T 

X expL- iT(V <l>A(¢m)' X)] exp(- t itm[ ••• D. 
(4.12) 

The brackets in the exponent contain the third term of 
G(E, ¢). One chooses a coordinate system for X so that 
one coordinate (Xz) is perpendicular to the surface of 
constant energy at ¢ = ¢m, i. e., parallel to aE/a¢ 1 <I>=I/Jm 
and the other two so that the cross terms X"X~ in the 
quadratic form in the exponential of (4.12) vanishes. 

Performing the integration over T gives 

( . . .) - exp(ipm) 1 f +~ d f +~ d 
g J1>12,13 iCl(211)2' IVI/JA(¢",) 1 _~ X" _~ X~ 

x exp(- itm[X . V I/J v'" . XV2) (4. 13) 
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where the vectors X and V'" contained in the brackets of 
the exponential are now two-dimensional vectors. 

Using the identity 

f
+~ 1/2 

_~ exp(-iAx
2
)dx= 1:1 1/ 2 exp[- (i11/4)sgnAj 

leads us to the final result 

( . . .) exp(ipm) 
g J1>12,13 - 27fIX(j) I 

(4.14) 

x exp(- irr{(sgn/4)[a2A(¢m,,)/ax;] + (sgn/ 4)[ aZA(¢ m'y)/ax~] + H) 
1 aZA(¢"m)/ax~ 11121 a2A(¢ ym)/aX~ 11/2 

(4.15) 

At times the energy lying on the interior of the sur
face of constant energy is Slightly higher than the en
ergy lying on the exterior. In such a case the vector 
V ",A(¢) points inward, and the inner product of qm' X(j) 
< 0 implying that (4. 13) will correspond to an incoming 
wave rather than an outgoing wave. This whole analysis 
may be saved if instead of (4.7) our Green's function 
is chosen to be 

6 ex.p[iq . X~)] 
S1'S2'S3 C2F(E) - A(2118 N) - il5 

(4.16) 

Since 

_1_._ = _ ~ ("" dt exp(- ixt - Dt) 
x- zl5 Z )0 ' 

(4.17) 

by proceeding as in the previous discussion we then will 
see that our final Green's function will asymptotically 
resemble an outgoing wave . 

5.10 AND 3D SCATTERING FROM SURFACE DEFECT 

As examples of the preceding discussion we now cal
culate the T matrix and scattered wave w for a cut ID 
circular ring and for a cut 3D s. c. c. periodic lattice as 
derived from Eqs. (3.7) and (4. 4b). 

1 D chain: Using (3.9), 

T = (~ ... -/ \ +(~ .,. -: IV(O) g(I) ... g(N:- 1») T. 

-, ... ") -, ... " h(l) ......... g(O) 

(S. 1) 

Noting that the value of the Green's function only de
pends on the difference in coordinate pOSitions, 5 we 
may write g(k -l) =g"" Thus, the mrth element of Tis 

T mr = (M1)mr +6 (M1)m"g", T 'r 
'" 

'" (M1)mr+176 I5mlguT'r+ I5mngnlT'r 
I 

- 6 0mngu T 'r + 0mlgnl T 'r I 
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where 

(M1)noT = '1)[ 0ml 0Tl + 0mn 0,.,,] - [O_OTl + 0ml 0Tn]' 

Rewriting (5. 2a) as 

T mT[1 + 0mnglm + 0mlgnm -1)(1im1 g 1m + 0mngnm)] 

= (M1)mT+1) 6 (Omlgll T 'T+ 0mngnIT'T) 
I~m 

(5.2b) 

- 6 (Omngll T 'T+ 0mlgnIT'T)' (5.2c) 
10m 

it may easily be verified that if i = 2, ... ,n - 1 and 
j = 1, ... ,n, then 

(M1)ij = T ii = O. 

When i = 1, ... ,n and j = 2, ... , n - 1, 

T, - [1)g(1)-g(O)]2 T 
Ir [1-1)g(O)+g(1)]2 Ii' 

(5. 2d) 

(5.2e) 

This equation is satisfied if Tij = 0 or if [1)g"(1) - g(O)]2 
= [1 - 1)g"(O) + g(l)]2. That the former relation is the cor
rect one may be demonstrated by noting that 

T -T _ 1)+g(O)[1-1)2] ( ) 
11- nn- [1-1)g"(O)+g(1)]2-[1)g(1)-g(O)]2 5.2f 

and 

_ _ - 1 + g(l )[1)2 - 1] 
T1n - T n1 - [1 _ 1)g(O) + g(1)]2 _ [1)g(l) _ g(O)]2 . (5.2g) 

The total wave solution is thus, 

1/Js(j) = exp(2rrisj/N) + 6 g "'BT fJ'r1/Jo (y) 
By S 

=1/Jo (j)+g(j-1)[T(O)1/Jo (1)+T(l)1/Jo (N)] 
S S s 

+g(N - j)[T(1)1/Jo (1) + T(O)1/Jo (N)] 
s S 

(5.3a) 

where 

1/Jo (j) = exp(2rrisj/N). 
S 

(5.3b) 

To show the outgoing wave character of the scattered 
solution, consider the 1D analog of 3. 8 

. =.1...';' ex (2rris' N) 
g(J) 2N:;;1 F _ COS21TS N' (5. 4) 

As j - co 

( .) =.1. rr exp(ijp) dp where cP = 21TS/N. (5. 5) 
g J 411')0 F- coscp 

Setting z = exp(icp), (5.5) becomes a contour integral 
over a unit circle and 

. 1 f zidz 
g(J) = 21Ti z (2F - (z + z-l)) 

-1 f zidz 
= 2rri [z - (F + .JFT=1)][z - (F-~)] . 

(5.6) 

The value of this integral is dependent upon the range of 
IFI. For, 

(1 ) IFI > 1, 
(")_ (IFI-·lF'l-l)i. 

g J - 2v"F'=1 ' (5.7a) 

(2) IFI <1, 
(.) _ - (IFI +i~)i. 

g J - 2ijl _ F2 ' (5.7b) 

(3) IFI =1, g(j) = - j. (5.7c) 
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In case (3) g(j) diverges as j - ± o(). This shows the 
delocaUzability of the defect wavefunction at the energy 
band edge, a result previously obtained by Montroll. 5 

If in (5. 7a) one substitutes coshcpo for I FI, one finds 

(1) g(j) = exp(- jCPo)/2 sinhCPo. (5.8a) 

Thus, out of the energy band the scattered wave will 
die out exponentially with the distance from the defect. 
This, of course, is not a solution to our scattering 
problem since the incoming wave 1/Jo is not a solution to 
Mo>Ito=O. Setting IFI =cosCPo in (5. 7b) gives 

(2) g(j) = i exp(ijpol2 sincpo)' (5.8b) 

Since CPo varies between - 11' < CPo < 11', our scattered 
wave will resemble an outgoing or an incoming solution 
depending on whether j is positive or negative. 

The functional form for the scattered Bloch wave will 
then be given by inserting (5. 8b) into (5.3). Due to the 
surface periodicity a similar result will pertain for the 
3D s. c. c. lattice with the replacement of Fin (5.4) by 
Fn1' n2 and with a corresponding reassignment for the 
nonzero T-matrix elements. 

6. SURFACE SCATTERING 

The lattice Green's function as defined in Sec. 3 has 
been utilized to examine the effect of a finite number of 
defects as perturbative agents on the electronic band 
structure of a perfectly periodic lattice. Section 4 ex
ploited this construction in order to characterize how 
a wave propagates from a defect to other points in a 
solid via a T matrix. It should be clear from Eqs. (4.4) 
that the lattice Green's function embraces all the mul
tiple-scattering information the T matrix does and 
therefore by expressing the defect wavefunction by 
(3.7) 

>It =M(jlM1>It (3.7) 

we obtain a solution to the defect problem which implic
itly contains the combined multiple scattering properties 
of the periodic lattice together with its effective 
defect(s). 

Imagine an incident particle, either an electron or 
photon, striking the surface of our crystal system and 
then being scattered back into free space. We restrict 
ourselves to just this first layer scattering because the 
surface defect "communicates" with the bulk of the 
crystal through the lattice Green's function. One could 
make the model more realistic by including the second 
and/or the third layer as defects, but this would only 
change the functional form of G(j1>h,h) in (3. 14a) 
leaving Eq. (3.7) structurally invariant. 

Utilizing Eqs. (3.15), (3.17), and (3.18) the surface 
wavefunction in the limit as N3 - 00 for fixed j3 is 

1/J(j1>h,h) = exp [21Ti(~~1 + n,~2)J<1) - 1)g(j3 - l)cp(l). 

(6.1) 

Since g(h) may have localized or propagating character 
depending on whether I F n1• n21 > 1 or I Fn1• n2 I < 1, see 
Eqs. (5.7) respectively, 1/J(it,h,h) when normalized 
over all the crystal atoms has the form 
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F(r,k,t) 

-_"2i'74L,,_.f'1 :....--+---.;L-.,.L7""-';,I----X'C05 _21"_n, +C05
2
-,",-, 

N, N, 

-I 

FIG. 5. Plot of the form factor F/ftly) as a function of 
Xl2rrnj/Nj , 211'nz/N2) for surface states. The shaded area in the 
range I F I < 1 is a region in which the surface energy levels 
overlap the bulk energy bands. In the shaded area for which 
I F I > I, the surface states lie outside the band of bulk energy 

bands. 

1j!(h,h,h) 

1 

(NINztl /2 exp[i(jl 81 + h 82)J[1 - exp(- 2Znl, n2) J1I2 

= xsgn(Fnln2)exp[-(js-l)Zn J (q.2a) 
, 1'"2 

i(NIN2N3r l 
/2 exp[i(jl 81 + h82) J sgn(Fnl, n2) 

xexp[i(h-1)Znj,n2J (6.2b) 

where we have made the substitutions 

and 

8/ = 271nz/N/, 

1 Fnj' n21 = coshZnj '"2' 

Unl'"2 = sgn(Fnj, "2) exp(- Znl' n2)' 

i Fn1'"2i =coSZnj'"2' 

(6.3) 

(6.4a) 

(6.4b) 

(6.5a) 

Un n = sgn(F" n) exp(iZn n)' (6.5b) 
I' 2 I' 2 I' 2 

Figure 5 shows a plot of the form factor F(E) as a func
tion of X(271n/N j , 271n2/N2)' For I FI < 1, the surface 
states overlap the bulk energy bands. Since the bulk 
and surface wavefunctions are continuous at the surface, 
the net result of this is that when an incident particle 
scatters from surface states whose energies lie in the 
bulk bands they are in essence scattering from bulk 
states as well. For I FI > 1, the incident particle will 
scatter solely from Tamm states. 

The actual details for the computation of the scatter
ing intensity are now no more difficult than the matching 
of a number of wavefunction boundary conditions. Since 
the atomic potentials of our crystal are all ID potentials, 
the impinging particles can only interact with the field 
of an atom scatterer along the direction of a bond. For 
simplicity, assume that the scattering in a center of 
mass coordinate system takes place along the dangling 
bonds of our surface (see Fig. 6). The potential V(r) , 
0"" r "" l', along that bond may be given 3D character by 
setting r = z cos 8. z cos8 is therefore a projection of r 
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with e defining the incident scattering angle. Thus, when 
the scattering angle e '" 0 (direct incidence) the dangling 
bond is normal to the surface, i. e., its direction when 
the surface was created, and the incident particle feels 
the full potential field of the surface atom. At any angle 
8,* 0 the interaction is correspondingly lessened. Since 
the crystal energy structure is of topological origin, 
changing the orientation of the dangling surface bonds 
over a polar angle e, - 71/2 "" e "" 71/2, does not affect the 
crystal energy structure. 

A solution to this external scattering problem can be 
obtained by postulating a surface potential that is cut off 
at some distance r = R from the scatterer. Since this 
cutoff potential actually coincides with the end of the 
dangling bond, we have 

V( ) = (- Vo sech
2
yr 0"" r "" l') 

r 0 r> [' . (6.6) 

The solution to the Schrodinger equation thus has 
three regions of validity 

(1) r=O, ct>(O)=1j!(jj,jz,I)=ccos15 

_ exp[271i(Nlit/NI +~j) Nz 
- (NIN 2)1I 2 

x (1- U2 )112 
"1'"2 ' 

(6.7a) 

(2) 0"" r "" l', ¢(r) = c COs15~oskr - t sinkrtanhyr 

- tan 15 (sinkr + t coskrtanhyr)) , 

(3) r>l', ct>(r)=Bexp(+ikor), 

(6. 7b) 

(6.7c) 

where k5 is the incident particle energy, k5 = k2 + 2y2. 

In (6. 7a) we have chosen the surface wavefunction 
corresponding to localized Tamm states since it has the 
damping structure necessary to mitigate the penetrating 
power of the incident particle to the first few levels of 
the crystal. The ensuing calculation could also be per
formed for surface wavefunctions of the type (6. 2b). By 
the continuity of the wavefunction and its derivative at 
r=l', and due to (6. 7a), it can be shown after some 
algebra that 

FIG. 6. A rectangular two-dimensional lattice of scatterers: 
jji and j2j are the primitive lattice vectors. The incident wave
vector !tots shown perpendicular to the lattice plane, with e 
defining the incident scattering angle. 

Aaron B. Budgor 2160 



                                                                                                                                    

(II. II;!) 

lim tanO = - i, (Ii. lib) 
1' .. .:0 

and 

B -exp(- ikol') exp r21Ti(mtil + m2h\1_ ~ )112 (cOSkl' _ I sinkl' tanhyl' - tanO (Sinkl' + I cos"'" tanh) I')~' (Ii.lk) 
- (N1N2)1 /2 L Nl N2 J' "'t'"'2 \ k ~ k 'l 

If each surface scatterer acts independently of one an
other then the total scattered wave q,(P) at some point 
P above the surface due to contributions from all the 
scattering centers on the lattice surface is a super
position of plane waves. Realistically, though, this con
structive interference can occur only when the point P 
is asymptotically distant from the surface. Thus, 

Nt. N2 Nl. N2 

q,(P)=B 0 rpi.i(P)=B 4 exp(ikolrJ,J I) (6.9) 
i 1• J2=t 1 2 it. J2=1 1 2 

where the sum is over all the coherent scattered waves 
emitted from scattering centers which are located at 
coordinates (it,h,l) 

jl=l, ... ,Nt. 

h =1, ... ,N2 

and where we identify P == I r it. i2 I . 

We sum the series in (6.9) by considering a vector IC 

pointing in the same direction as P and with magnitude 
equal to ko. Then, 

IC· ri l' i2 = IIC I I r it• i2 I 
=ko ht.h I 
=koP. (6. 10) 

Due to the surface periodicity, any point may be 
chosen as an origin (r') with the vector r i1 • i ? joining the 
point P above the surface with r' on the surface. De
fining u = r' - p(jt.h) as a vector connecting any point on 
the lattice surface with the origin at r', rJ1' i2 may be 
rewritten as 

r it' j2 = (p - u - p(jt.h»j 

(6. 9) then becomes 

Bexp[ilC. (P-u)] 0 exp[-ilC·p(it,h)]. 
it. i2 

Defining 

p(j1>h) = (hL,j2l, O~) 
and 

(6. 11) 

(6. 12a) 

(6. 12b) 

the triple U,j,~) denoting the standard Cartesian unit 
vectors, (6. il) then sums to 

B ['. (p _ )(1 -eXP(iNtkor») (1- eXP(iN2kOY)j 
exp 11C u 1 ('k) ('k ) . - exp 1 Or 1 - exp 1 OY 

(6. 13) 

By setting Nl =N2 = N the scattered intensity I(e, rp) is 
then 
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where 

ko" = ko sine cosrp, 

kOY = ko sine sinrp, 

(6.14) 

and rp is the azimuthal angle of spherical coordinates. 
B in this formulation may be identified with the geomet
rical structure factor t3 of Bragg diffraction, since it 
clearly depends upon the connectivity and atomic poten
tials of the surface. Functionally speaking Eq. (6.14) 
resembles the intensity found due to Fraunhofer diffrac
tion in optical systems. t4 

For illustrative purposes, suppose rp = 1T/4. Then, 
I resembles 

(6.15) 

This function (Fig. 7) has maxima, each of height ~, 
at x = 0 and at x = n1T, n = ± 1, ± 2, .•. ; x = 0 may be obtained 
by either setting ko = 0, or e = O. Physically, these situa
tions may be interpreted as the forward scattering due 
to the incident particle-valence electron interaction, 
since this process is greatest when these conditions 
are met. Secondary maxima occur between the zeroes 
of the intensity function, that is, when x = m1T/N, miN 
nonintegral, and where m =± 1, ± 2, .. '. For rp"* 1T/4 
similar analyses may be performed, resulting in the 
same type of qualitative behavior for I. 

As N-oo 

I( e, rp) - N
4
0(ko" - 21Tml)O(koy - 21Tm2)"'t. "'2=0. ~t. ~2 •••• 

(6.16) 

Since ko = 21T/A, then when the wavelength of the in
coming radiation A is of the same order as the inter
atomic spacing of the surface; this relation expresses 
the well-known condition for Bragg scattering in terms 
of e and rp. 

II!..tI 111...11 lA..J lA..A I&..l lu IA..A. 1A..n oft 
o rr 21T 

N N 

FIG. 7. The normalized intensity function 

1 sin4Nx 
1(9,71"/4) = N4 sin4x . 

.. 
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FIG. 8. Plots of log l(e, 71"/4) versus scattering angle e for var
ious values of N, N being the number of atoms along each of 
the axes of the crystal. The wavefunction of the surface scat
ters corresponds to the one bound state sech2yx potential. In 
each of the graphs the incident particle energy k~, the energy 
state of the surface valence electron, and the ratio of the range 
of the surface potential to lattice bond length l' /1 are fixed. 
(a) 1'/1=1.5, ~=5; (h) 1'/1=1.5, ~=10; (c) 1'/1=15, ~=5; 
(d) 1'/1=15, ~=10; (e) 1'/1=00, ~=5; (I) l'/I=oo, ~=10. 

In Figs. 8 we have plotted the logI(e, 1T/4) versus 
scattering angle e for a number of values of N. In each 
graph the incident particle energy k~, the energy state 
of the surface valence electron, and the ratio of the 
range of the surface potential to lattice bond length [' /l 
are fixed. These plots indicate that the overall intensity 

2162 J. Math. Phys., Vol. 16, No. 10, October 1975 

DIFFERENTIAL CROSS SECTION 
11.8 
11.1 
11.0 
10.6 
10.2 
9.B 
9.' 
9.0 
B.' 
B.2 
7.B 
7.' 

~ 
7.0 

~ 6.' 
'.2 

if> 5.B 
z 5.' 
~ 5.0 
z ... 

'.2 
3.' 

to 3.' 
'3 3.0 

2.' 
2.2 
l.' 
l.. 
l.0 
0.' 
0.2 

-0.1 
-0.5 
-0.9 
-l,] 
-1.7 
-2.\ 

0.157 D.Jli O.i71 0.628 0.785 0.9i2 1.099 1.256 l.il3 1.570 

(d) 
THETA 

DIFFERENTIAL CROSS SECTION 
'.5 
'.J 
3.7 
J.J 
2.' 
2.5 
2.1 
1.7 

~ I.J .... 
0.9 

"' 0.5 
Z 

~ 0.1 

Z -0.2 
-0.6 

C!> -1.0 

'3 -I.i 
-1.8 
-2.2 
-2.6 
-J.O 
-J.t 
-J.8 
-i.2 
-t.6 

(e) 

DIFFERENTIAL CROSS SECTION 
i:! y-------------------:----------, 
'.2 
7.' 
7.' 
7.0 
'.6 
6.2 
5.' 
5.' 
5.0 
'.6 

>-<i'2t~ i-" ~:~ 
V1 3.0 , 

~zz U ,,' ". 
l.t ; " /' ~ 

-'1.1 

'II·· \;1. .• (:\,:;:"\! 
:U ~-....,...--.._-....,....!.--.._-...... --.._-...,....-~~-...,....----l 

o 0.[57 D.3\t 0.i71 0.626 0.785 0.9'\2 1.099 1.256 l.il3 1.570 

(t) 
THETA 

Legend: Number of surface atoms along axes (N) and corre
sponding surface state energies, mE/1i 2y2 =fil/2y2. 

+-----10000 atoms, 
~ -----1000 atoms, 
o ----- 100 atoms, 
0-----10 atoms, 

fil/2 y 2 =0. 041989; 
k 2j2y2 =0. 041989; 
k 2/2y2 =0. 042 015; 
k 2/2y2 = O. 044 674. 

profile is not greatly affected by the l'/l ratiO, but is 
clearly dependent on the total number of atoms on the 
surface. Combining this information with that of Fig. 9 
which depicts the variation of logI(e, 1T/4) versus in
cident particle energy, leads one to believe that for a 
fixed surface state energy one need only require a sur-
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face of -1002 atoms to reproduce for particular values 
of k~ and e sharp Bragg diffraction lines. By assuming 
an interatomic lattice spacing of 1 }.., one can obtain a 
proper crystallographic representation of a material 
from a sample having an area of only 104 }..2. This 
figure lies within the experimental accuracy of ELEED. 

By employing the identities 

(
N ~ sin2(Nx 2) 

2 -2 + u (N - m) cosmx) = . ( 2) , 
m=t SIn x 

cosA cosB = Mcos(A + B) + cos(A - B)], 

1027 
cos(c coscp)dcp = 1027 

cos(c sincp)dcp 

(6. 18a) 

(6. 18b) 

= 21TJO(C), (6. 18c) 

1027 
cos[c(a coscp + b sincp)]dcp = 21T[0(ic~) 

= 21TJO(c.fti!+b2), (6. 18d) 

107

/

2 
de sinOJo(c' sinO) = h/2c' J t12 (c') 

= sinc'/c', (6. 18e) 

(6.19) 

Thus, the total cross section is a slowly oscillating 
function having a maximum value of 21T/B/2~ at ko=O 
and reaches a minimum value of 21T/B/2N2 as ko-oo. 
Classically, these results would be four times smaller. 
It should be noted that due to the imposition of the con
dition that the scattering phenomenon takes place only 
above the crystal surface a(ko) is one-half the value ob
tained for quantum mechanical coherent scattering by 
point sources. 

DIFFERENTIAL CROSS SECTION 
+169 

+ 141 

+113 

+81 

~ .... +53 
on 
~ 

+21 ~ 

'" -10 
0 
--' 

-34 

-GG 

-94 

-126 
6.0 12.0 18.0 21.0 JO.O 36.0 '42.0 18.0 S'i.O 60.0 

ENERGY 

FIG. 9. Variation of logI( 9, 7r/4) versus incident particle ener
gy k5wben l'll=oo. All the other conditions of Fig. 8 are up
held (cf. Fig. Ib). 
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One can also discern, in qualitative agreement with 
experiment, the secondary fine structure which in
creases in intensity in the vicinity of the Bragg angles. 

The total scattering cross section above the surface 
may be found by integrating [(e, cp) over all angles: 

(6. 17) 

The above formalism can be extended to the study of 
nonorthogonallattices, i. e., simple triclinic. Now, the 
pOSitions of the surface atoms may be denoted by the 
vector p(it,h) = (itehhe2, Oe3), with the Cj correspond
ing to the three nonorthogonal unit vectors. By orienting 
the crystal so that e :; i, e2 may be written as 

e2 = - i siny +j cosy, - - (6.20) 

I' being the angle between e2 andj. We now have a 
Cartesian representation for pU;,h) and may proceed 
as before. 

7. ELEED FROM B.C.C. CRYSTAL SURFACES 

We now consider the more realistic b. c. c. surface 
scattering problem. 

The lattice Green's function analog to equations (3.14) 
for a b. c. c. lattice with a surface is 

8F(E)l/J(jl,h,ia) -l/J(jt ± 1,h + 1,j3 + 1) - l/J(jt ± 1,h - 1,ia + 1) 

-l/J(it± 1,j2 +1,ia-l) -l/J(jl± 1,h -1,j3- 1) 

(7. 1a) 

where 

H(jbh,h) = [/)'a- N3 + /)f 3• d(41})l/J(jbh,ia) 

- 0J3. 1[l/J(jl ± 1,h + 1, N 3) + l/JU 1 ± 1,h - 1, N3)] 

- /),3' N3[l/J(it ± 1,h + 1,1) + l/J(jt ± 1,h - 1, 1)]. 

Substitution of (3. 15) into Eqs. (7. 1) results in 

2 Fn1• "2CP(j3) - CP(j3± 1) 

(7. Ib) 

= /)'3'N3[~CP(N3) - cp(l)] + /)'3. 1[l1CP(l) - cp(N3)] (7.2) 

where we define 

F _ F(E) 
nl·

n2 - cos (21Tnt!N1) cos (21Tn2/N2) (7.3a) 

and 

(7.3b) 

This formalism is now identical to that found for the 
s. c. c. lattice. The same scattering formulas can now 
be ~sed, afte~ replacement of all Fnl'n~ and 1} functions 
by F nl'n and 1}. As in the previous sections, all results 
are analytic. The scattering intensities will resemble 
the s. c. c. intensities, but peaks will be Shifted. 
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8. CONCLUSION 

A method has been introduced which uses the con
servative property of current on a network in order to 
characterize the scattering of charged particles from a 
finite number of defects in a periodiC lattice of atoms. 
Since the current conservation is a topological property 
of the network, the approximations inherent to the 
model are entirely physical. For calculational ease, 
we have used a one electron approximation to a wave
function which is the solution of the Schrooinger equa
tion when the atomic potential V(x) = (- y 2n2/m) sech2yx. 
The use of this potential is convenient since as y - 0 
we obtain the Sommerfeld free electron model and as 
y - 00 we obtain the tight binding model. The parameter 
y can therefore be likened to an effective mass and 
thereby enables one to fit calculations to experiment. 
The results of this method can also be put into a one to 
one correspondence with the more established tight 
binding modelt5 with the identification of the Hamiltonian 
parameters (]I(m) (the orbital energy of the mth orbital) 
and fl~::'/ (the hopping matrix element between the mth 
and nth orbitals) to functions arising from (2.6) and its 
derivative. Thus, for nearest neighbor interactions be
tween orbitals 

a(m) = - k(l +y2 k
2

) ( ) 
(m*1) sinkl + (y k) coskl tanhyl ' 8. I 

(m) - k(coskl + y/k2 k cosk! sech2yl- k sinkl tanhyl ) 
(]I = 

sinkl + (y k) coskl tanhyl 

One should note, however, that this model only has one 
arbitrary parameter as compared with the two in the 
tight binding approximation. This lends itself to a cer
tain amount of Simplification in fitting theoretical re
sults with experiment. Since qualitative agreement with 
experiment is excellent, this seems to imply that struc
ture dominates the electronic character of a scattering 
system. That structure is not the whole story is aptly 
brought out by Duke t in his discussion of surface scat
tering. Thus, an obvious and necessary extension of 
this approach is the inclusion of many body effects. As 
a first approximation, however, one can utilize this 
type of method to get a grip on what to expect from a 
much more complicated and certainly an orders of mag
nitude more costly approach. Work is now being com
pleted in extending this procedure to the multiple scat
tering formalism of Lloyd and Keller, where now the 
potential field of the atom for the valence electron is 
an experimentally fitted 3D potential and the scattering 
occurs along the channels of the scatterer, which now 
corresponds to the network of our system. 
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APPENDIX A 16 .17 

Let Mo be an N-dimensional cyclic matrix of the form 
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N-t 

= 6 m(j)RJ 

J=O 

m(l) ....... m(N-1) 

m(O) m(l) ..... 

m(-l) m(O)··· .. 

where the permutation matrix R is defined by 

and 

R= 

o I 
o 0 
000 I 

000 
o 0 

RN =IN • 

(~ ~ ~ ~:::) 
R2- . 

I ......... . 
o I ...... .. 

(AI) 

(A2) 

Since the eigenvalues of Rare exp(2rrik/N), k = 0, ... , 
N - I, the eigenvalues Ak of Mo are as a res ult of (AI) 

N-t 

Ak ~ 6 m (j) exp(2rrik/N), (A3) 
J=O 

If for higher dimensional lattices the elements m(s) are 
circulant matrices in their own right, the eigenvalue 
analog to (A3) is 

Nt-t N -1 

Akl,k2' ••• ,kn = .0 .... to m(jl>' .. ,jn) exp /2rr/E
1
ih
N
' ) 

Jt=O J,.- \' p= P 

with the corresponding normalized eigenvectors 

(l ) _ n 1/2 (. ~ ~) 
<Pkt , .•. , kn to···, In - p~ Np exp 2m f.l Np , 

n being the dimenSionality of the lattice. 

Consider the eigenvalue matrix equation 

Mo <Pt ~ At<Pt 

which when expanded is 

At<Pt(1) =0 m(I-I')<p,,(I'). 
I' 

m (1- 1') has the form 

m(l-I') =6 At<pt(I)<p:(l'), 
t 

(A4a) 

(Mb) 

(A5) 

(A6) 

(A7a) 

since if we multiply m(l-l') by <pt'(l') and sum over l' 

~ m(l- 1')<pt'(I') = ~ At<p,,(l)<pt(I')<pt'(I') (A 7b) 
l' 1', k 

(A7c) 

(A 7 c) being the result of the orthogonality of the <p' s. 

Raising (A7a) to the nth power we find 

m n(I-I') =6 A~<pt(I)<pW')· 
t 

(AS) 

In particular, when n = - I and the elements of Mo are 
taken from (3. 3a), the connectivity matrix of a one
dimensional ring, (A8) becomes 
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(A9) 

the Green's function for a 1D periodic ring. The d
dimensional s, c. c. Green's function can be derived in 
a similar fashion from (A8) and is equivalent to (3.8) in 
the main text. 

APPENDIX B 

The memory function of (3.9) is derivable in the 
following manner. Consider Figs. 4. Here we depict 
a one-dimensional ring of N atoms cut between atoms 
Nand 1. From symmetry considerations let us restrict 
ourselves to the dangling bond connected to atom N. 
Defining the wavefunction along the dangling bond by 
¢ (x), ° ~ x ~ 1', then the wa vefunction l/J(N), at atom N, 
is according to (2.6) 

l/J(N) = ¢(O) =acosli (B1a) 

and 

¢ (x) = l/J(N){[ cosh - (,/k) sinh tanhyx] 

- tanliNE[sinkx + (y/k) coskxtanhyx ]}, (B1b) 

the subscript E of liNE identifying the end of the chain. 
If as a boundary condition ¢ (1') = 0, then 

t Ii _ coskl' - (y/k) sinkl'tanhyl' 
an NE - sinkl' + (y/k) coskl' tanhyl' . (B2) 

Since the standard relation between two interior node 
points [i. e., atoms Nand N - 1 as derived in Ref. 4, Eq. 
(38a)] is 

- (1 +cu+sv)l/J(N-1) 

= [2s(c +u) tanli N, N-l + S2 - c2 + sv - cu ]l/J(N), (B3) 

then by applying the conservation condition (2.2) we 
obtain 

which after some algebraic rearrangement becomes 
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(B4) 

2F(k/Y)l/J(N) - l/J(N - 1) - l/J(1) = 1/l/J(N) - l/J(1) (B5) 

where 

F(k/) 2s(c +u) t ~ 
1/= I' -l+cu+sv x anvNE (B6a) 

and 

F(k/y) = (c 2 - S2 +cu - sv)/(l +cu + sv). (B6b) 
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Positive solution of a time and energy dependent neutron 
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The purpose of this paper is to give a constructive method for the determination of a solution and an 
existence-uniqueness theorem for some nonlinear time and energy dependent neutron transport problems. 
including the linear transport system. The geometry of the medium under consideration is allowed to be either 
bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole 
space R m (m = 1,2,···). Our approach to the problem is by successive approximation which leads to various 
recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz 
conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, 
that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by 
the linear transport equation. all the results for the nonlinear system are valid for the linear transport problem. 
In the general nonlinear problem. the existence of both local and global solutions are discussed. and an iterative 
process for the construction of the solution is given. 

1. INTRODUCTION 

In the neutron transport and radiative transfer prob
lems, the usual time and energy dependent equation 
for the density function may be written as the following 
integro-differential equation (usually referred to as 
linearized Boltzmann equation): 

ON at + v(n· 'VN + :6(t, x, n, /J.)N) 

= f"mj :6 s (t, x, n, n', /J., /J.')N(t,x, 0', /J.')dn' d/J.' 
o S 

+q(t,X,n, /J.) 

(t>O, XED, nES, O~/J.~/J.m)' (1. 1) 

where D is an open domain in the Euclidean space 
Rm(m=1,2, ... ), SistheunitsphereinRm

, andVis 
the gradient operator with respect to the spatial variable 
xERm. In terms of neutron transport, N=N(t, x, n, /J.) 
is the neutron density at time t, position x moving in the 
direction n with speed v energy /J., /J. m is the maximum 
energy, :6,:6 s are the total and scattering cross sec
tions, respectively, and q is the neutron source. The 
equation in the form of (1. 1) has been investigated by 
many workers and a number of methods have been 
developed for the determination of the solution (cf. 
Refs. 1-16). Following a classical approach for initial 
boundary value problem by Fourier transformation, 
Case and Zweifel 1.2 transformed a linear time-depen
dent equation into a time-independent equation and then 
investigated the transformed problem through the con
struction of a Green's function. A different approach 
was developed by Bellman, Kalaba, and Wing 3.4 under 
the title of Invariant Imbedding. This approach reduces 
the linear transport problem into a nonlinear initial 
value problem which has its computational significance. 
Using the linear semigroup theory, Lehner and Wing 5,6 

investigated the linear transport problem in a slab 
geometry by studying the spectral properties of the 
linear transport operator. Their approach was extended 
to spatial domains of higher dimensions by HejtmanekB

, 

Suhadolc14 , Vidav15
, Mika16 

, and many others and, to 

2166 Journal of Mathematical Physics, Vol. 16, No. 10, October 1975 

some extent, by Reed13 for a moving body. More recent
ly, this investigator 10,11 treated some nonlinear trans
port problems by the method of successive approxi
mations. An essential aspect of this method is that it 
leads to a recursion formula for the determination of 
the solution. Nevertheless, most of the work mentioned 
above concerned with energy-independent transport 
problems in bounded spatial domains. In this paper, we 
treat a nonlinear time and energy dependent transport 
equation, including the linear equation (1. 1), in an 
arbitrary medium (either bounded or unbounded). 
Specifically, we consider the following nonlinear 
Boltzmann-type equation: 

aN at +v(n·VN+a(t,x,n,/J.,N» 

= i"m I as(t,x,n,n',/l,/J.',N(t,x,n',/J.'»dn'd/l' 
o s 

+ q(t, x, n, /l) 

(t>O, XED, nES, 0 ~/l ~/J.m)' (1. 2) 

The consideration of a nonlinear equation includes the 
effect of collisions among neutrons where a, as are, in 
general, nonlinear in N. The spatial domain D is deter
mined by the geometry of the transport medium under 
consideration. Here we consider an arbitrary convex 
geometry in the sense that D can be either bounded or 
unbounded. The unboundedness of D includes the most 
commonly discussed geometries such as the whole space 
R m

, a half-space, an infinite or semi-infinite cylinder, 
etc. The velocity vn is assumed to range over a bounded 
set in Rm. 

In addition to Eq. (1. 2) we consider the following 
boundary condition: 

N(t,x,n,/J.)=o (t>0, XEr, nincoming, O~/J.~/lm)' 

lim N(t,x,n,/l)=o (t>0, nES, O~/l ~/lm)' 
Ix-l--eo 

(1. 3) 

and the initial condition 

Copyright © 1975 American I nstitute of Physics 2166 



                                                                                                                                    

(1. 4) 

where r is the boundary of D. The physical meaning of 
the boundary condition (1. 3) is that no neutrons enter the 
medium through the boundary surface r and neutrons 
vanish as I x I approaches infinite. It is to be pointed out 
that the boundary r is allowed to be either empty or 
the whole boundary of D (that is, either D =R m or D is 
bounded). In this situation, only one of the conditions in 
(1. 2) appears. 

The purpose of this paper is twofold: (i) To derive 
various recursion formulas for the calculation of ap
proximate solutions and error estimates for the approxi
mations and (ii) to give an existence-uniqueness 
theorem by proving the convergence of the approxima
tions to a unique positive solution of the problem. We 
also discuss the existence of a local solution and its 
continuation to a global solution. This result leads to an 
interesting analogy between the initial boundary-value 
problem (1. 2)-(1. 4) and the calssical existence-uni
queness theorem of the Cauchy problem for ordinary 
differential equations. AU the results for the nonlinear 
problem are applied to the linear problem (1. 2), (1. 3), 
(1. 4). Since each formula given in this paper involves 
only successive integration of a known function, our 
method yields both analytical results and computational 
significance. 

2. EXISTENCE PROBLEM BY SUCCESSIVE 
APPROXI MATIONS 

Throughout the paper we always assume that the func
tions a, as' q, </> are bounded continuous for (t, x, a, jJ.) 
~ E, INI < 00, q(t, x, a, jJ.) - 0, </>(x, a, jJ.)- ° uniformly 
in (t, a, jJ.) as Ixl _00 and </> satisfies the boundary con
dition (1. 3) at t=O, where E=[O, T]xDXSX[O, jJ.",J and 
T is an arbitrary finite number. It is assumed, for con
venience, that v = 1 (see Remark 2.1). In addition, we 
make the following assumptions: 

(H): a(t, x, a, jJ., 0) = as(t, x, a, a', jJ., jJ.', 0) = ° and there 
exist bounded nonnegative functions p, Ps satisfying 

p = sup [p(t, x, a, jJ.) 
(t,x,n,JJ.)~ E 

+ fo"'mfs Ps(t, x, a, a' , jJ., jJ.') dn' djJ.'] < "" (2.1) 

suchthatfortE[O,T], XED, a,n'ES, jJ.,jJ.'~[0,jJ.",], 

1h,7)2 E(- 00, 00), 

la(t,x,a,jJ.,7)1)-a(t,x, a, jJ.,7)2) 1 ~p(t,x,a,jJ.)17)1-7)21, 

1 C1s(t, x, a, a', jJ., jJ. ',7) 1) - asU, x, a, a', jJ., jJ.', 112) 1 

~ P3 (t, x, a, n', jJ., jJ.') 1111 -7)21. 

(2.2) 

(2.3) 

The above hypothesis implies that if N is a bounded con
tinuous function on E such that NU, x, a, jJ.) - ° uniform
ly in (t, a, jJ.) as Ixl - 00 then so is the function 

fo(t, x, a, jJ., N) = - a(t, x, a, jJ. ,N) 
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+ l"''''j as(t, x, a, a', jJ.,jJ.',N(t,x, a', jJ.'))dO'djJ.' 
o s 

+ q(t, x, a, jJ.). (2.4) 

Notice that the uniform convergence of fo to zero as 
I x I - 00 follows from (2.2), (2. 3) with 112 = 0. 

In order to describe our process of successive ap
proximation and to insure the convergence of the ap
proximations to a solution, we first transform the 
problem (1. 2)-(1. 4) by letting u= exp(- Xt)N to obtain 
the transformed system 

ca/at+ a· V)u+Xu=f(t, x, a, jJ., u) let, x, a, jJ.) EE], 

(2.5) 

u(t,x,a,jJ.)=o (tE(O,T], XEr, a incoming, 

° ~jJ. ~ jJ.",), (2.6) 

lim u(t,x,a,jJ.)=o (tE(O,T], aES, O~jJ.~jJ.m)' 
1 .. 1-00 

u(o,x,a,jJ.)=</>(x,a,jJ.) (XED, aES, 0~jJ. ~jJ.m)' 

(2.7) 

where X > p is a constant and 

f(t,x,a,jJ.,u)=exp(-xt)fo(t,x,o,jJ., exp(xt)u). (2.8) 

We then seek a solution for the linear equation 

(a/at+a·V)u+Xu=h [(t,x,a,jJ.kE] (2.9) 

under the boundary and initial conditions (2.6), (2.7), 
where h is a bounded continuous function on E such that 
h(t,x,a,jJ.)-Ouniformlyin(t,a,jJ.)as Ixl- oo • By 
usingthenewvariablesx'=x-nt, T=t, Eq. (2.9) 
reduces to 

au (T, x' + aT, a, jJ.) + >"U(T, x' + aT, a, jJ.) aT 
=h(T, x' + aT, a, jJ.), (2.10) 

where aU/OT is the substantial derivative of u. Multi
plication by exp(X T) and integration from ° to t over T 
lead to 

exp(>..t)u(t, x' + m, 0, jJ.) - u(O, x', a, jJ.) 

=11 exp(XT)h(T,X'+aT,a,jJ.)dT. 
o (2.11) 

Applying the initial condition (2. 7) and replacing x' by 
x - m, we obtain 

u(t,x,a, jJ.)=exp(->..t) </>(x- at,a,jJ.) 

+ t exp[->..(t-T)]h(T,X- o(t-T),a,jJ.)dT. 
o 

(2. 12) 

It is clear by reversing the order in the above derivation 
that the function u given by (2. 12) satisfies (2. 10) and 
therefore is a solution of (2.9) when (a/at + n . v)u is 
considered as the substantial derivative of u. Obviously, 
u also satisfies the initial condition (2. 7). To show that 
u satisfies the boundary condition (2.6), we define 

</>(x,O,jJ.)=h(t,x,a,jJ.)=o if x fD and a incoming, 

(2.13) 
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where I5 is the closure of D. Then u satisfies the first 
condition in (2.6) since for x E r and incoming n, the 
point x - net - 1') is outside of D for every t> l' '? O. In 
view of the uniform convergence to zero of the functions 
hand cfJ as Ix 1- "", we see that u(t, x, n, J.!.) - 0 uniform
ly in (t, n, J.!.) as Ixl - 00. Hence the function U given by 
(2.10) is the solution of the problem (2.9), (2.6), (2.7), 
where (a/at + n· 'V)u is considered as the substantial 
derivative of u. Notice that if h is differentiable in each 
component x i of x, then u is differentiable in t and Xi 

and thus is a solution of (2.9), (2.6), (2.7) in the usual 
sense. 

The above observation leads to the following con
sideration: Define 

a(t, x, n, .)= as(t, x, n, .) == q(t, x, n, J.!.)= CP(x, n, j.J.) =0 

can determine a sequence {U(kl} successively from 

(2.19) 

To insure that this sequence converges to a solution of 
(2. 18), we show the following: 

Lemma 2. 1: A is a contraction mapping on CorE) with 
a contraction constant (p/A). 

Proof: Let Ul' U2 E CorE). Then by (2.17), 

I (Au l - Au2 )(t, x, n, j.J.) I 

~C expl- \(t - 1'») I (f(u1) - f(u2» (1', x - net - T), n, jJ.) I dr, 

~ (f exp[ - A(t - T») dT) Ilf(u l ) - f(u2 )11 < A -ilif (ul) - f(u 2 ) II 

when x ~ 15, n incoming (2,14) for any (t,x,n,jJ.)EE. Hence 

and 

(f(u»)(t, x, n, jJ.) =f(t, x, n, jJ., u(t, x, n, J.L)). (2.15) 

Since f (u) is bounded continuous on E such that 
(f(u» (t, x, n, jJ.) - 0 uniformly as I x I - 00 whenever u 
has this property and since by (2.14), (f(u))(t,x, n, J.!.) 
= 0 when x f 15, we see by letting h = feu) in (2.12) that 
the problem (2.5)-(2.7) is reduced to the integral 
equation 

u(t, x, n, jJ.) ==exp(- At) CP(x - nt, n, J.L) + t exp[- A(t - 1'») 
o 

x (f(u» (1', X - net - T), n, jJ.)dT 

let, x, n, jJ.) E E). (2.16) 

Hence if we can find a solution u of the above integral 
equation and if u is bounded continuous on E such that 
u(t, x, n, jJ.} - 0 uniformly as I x I - 00, then u is a solution 
of the problem (2.5)-(2.7) along the characteristics of 
the streaming operator. We shall accomplish this by 
the method of successive approximation. Throughout the 
paper, by a solution of (2.5)-(2. 7) we mean a bounded 
continuous function u which satisfies the conditions 
(2.6), (2.7) and Eq. (2.5), where (a/at + n 0 'V)u is con
sidered as the substantial derivative of u. A similar 
definition holds for a solution of the problem (1. 2)-(1. 4). 

Let C (E) be the Banach space of all bounded continuous 
functions u on E equipped with the norm 

Ilull=sup{lu(t,x,n,J.L)I; (t,x,n,jJ.)EE} 

and let Co(E) be the closed subspace of all functions 
u E C(E) such that u(t, x, n, jJ.) - 0 uniformly in (t, n, J.L) 
as I x I - 00. Define an operator /I on Co (E) by 

(Au) (t, x, n, iJ.) == exp(- At) cfJ(x - nt, n, J.L) 

+ t exp[-A(t- 1'») 
'0 

X(f(U»)(T,X-n(t-T),n,iJ.)dr. (2.17) 

In view of the hypothesis H, A maps CorE) into itself. 
Hence Eq. (2.16) becomes the operator equation 

(2. 18) 

in the space CorE). Let U(Ol E CorE) be given. Then we 
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IiAul - Au2 11 .,,: 11.-1 Ilf(u l ) - f(u2 )11 [U H U2 E CorE»). 

(2.20) 

Since, by (H), 

1(f(ul )-f(u2»)(t,x,n,J.L) I .,,:eXP(-At)0(t,x,n,J.L) I 

x I exp(xt)u1 - exp(>d)u2 1 

I> 
+ fa mfs ps(t, x, n, W, iJ., iJ.') I exp(At) u! 

- exp(At) u21 dn'dJ.L ,) 

.,,:pllu! - u2 11 

for (t, x, n, jJ.) E E, we see that 

Ilf(Ul)-f(U2)II~pllul-U211 [U!,U2ECo(E»). (2.21) 

It follows from (2.20), (2.21) that 

IIAuI-Au211~(p/\)llul-u211 [Ul>u2c:::Co(E»). (2.22) 

By the choice of \ > 15, A is a contraction mapping on 
CorE) with a contraction constant (ii/II.) < 1. This proves 
the lemma. 

The above lemma leads immediately to the following 
conclusion. 

Theorem 2.1: Assume that (H) holds. Then for any 
U(Ol E CorE) the sequence {U(kl} given successively by 

U(kl(t, x, n, iJ.) = exp(- At) ¢(x - nt, n, J.L) + t exp[ - x(t - T») 
'0 

x (f(U(k-1l})(T, X - nit - r), n, J.L) dT, 

k= 1, 2, ... , (2.23) 

converges in CorE) to a unique solution 11 of the integral 
equation (2.16). Moreover, u is a solution of (2.5)-
(2. 7) along the characteristics of the streaming operator 
and the approximations U(kl satisfy the error estimates 

Ilu(k)_17II~[p/(\_p»)(p/x)(k-1)llu(l)_U(O)II, k=1,2, ..•. 

(2.24) 

PrOOf: By Lemma 2.1 and the contraction mapping 
theorem the sequence {U(kl} determined from (2.19) 
converges to a unique solution 17 EO CorE) of (2.18). Since 
(2.18) and (2.19) are the operator equations of (2.16) 
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and (2.23), respectively, we conclude that the sequence 
{u (kl} given by (2.23) converges in CotE) to the unique 
solution Ii of (2.16). Since Ii ~ Co(E) implies feU) E: CotE), 
we see that Ii is a solution of (2.5)-(2.7). Finally, the 
error estimate (2.24) follows immediately from the 
contraction property of A. 

If we multiply (2.23) by exp(U) and let N(kl 
= exp(At) U(k>, N == exp(xt)u, then the problem (2.5)-(2.7) 
becomes the original problem (1. 2)-(1. 4) and the re
cursion formula (2. 23) is reduced to 

N(kl(t, x, n, p.) = CP(x - nt, n, p.) 

+ f fo(T, X - n(t - T), n, p., 
o 

N(k-ll (T, X - n(t - T), n, p.» dT, 

k= 1, 2, .••. (2.25) 

It follows from the convergence of {U(kJ} to u that the 
sequence {N(kl} given above converges to a unique solu
tion N = exp(xt)1i of the original problem (1. 2)-(1. 4). 
This observation leads to the following: 

Theorem 2.2: Assume that (H) holds. Then for any 
N(Ol E: Co(E) the sequence {N(kl} given by (2.25) con
verges in Co(E) to a unique solution N E: Co(E) of the 
problem (1. 2)-(1. 4). 

Remark 2.1: (a) In obtaining the sequence {N(kl} 
given by (2.25) we have assumed that v == 1. When 
v * 1, this sequence should be replaced by 

Nlkl(t, x, n, p.) = cp(x - vnt, n, p.) 

+ J: fo(T, x - vn(t - T), n, p., 

NIk-l l (T, X - n(t - T), n, p.» dT, 

k=1,2, .... (2.29) 

Here Y is defined by 

Y(t,T,X,n,P.)=exp(t ~(~,x-~n,n,p.)d~). (2.30) 

It is easily seen from the proof of Theorems 2.1 and 
2.2 that the sequence {N(kJ} given by (2 .. 29) also con
verges to the unique solution N of (1. 2)-(1. 4). 

In case a==W, as=~sN, where ~ and 
Io"m Is ~s ( • , n', p.') dn' dp.' are bounded continuous func
tions on E, then the hypothesis (H) is fulfilled with P 
=~, Ps = ~s' It follows from Theorem 2.2 and the above 
remark that we obtain the following conclusions for the 
linear problem (1.1), (1. 3), (1. 4): 

Theorem 2.3: Let ~(t, x, n, p.) and 
Iol'm Is ~s(t, x, n, n', p., p.') dn' dp.' be bounded continuous 
on E. Then the sequence {N<kl} given either by (2.25) 
or by (2.29) converges to the same unique solution N of 
the linear problem (1. 1), (1. 3), (1. 4), where fo, g are 
defined, respectively, by (2.4) and (2.28) with a= ~N, 

as=~~' 

In Theorems 2.1 and 2.2 the functions a, as are as
sumed to satisfy the global Lipschitz conditions (2.2), 
(2.3). When a, as satisfy only local Lipschitz condition, 
that is, for some constant M > 0, 

la(t, x, n, p., 111) - a(t, x, n, p., T/2) I ~ PM(t, x, n, p.) IT/l - T/21 

I as (tgX, n, n', p., P.',T/l) - Cis(t,x, n, n', p., P.',T/2) I 

(2.31) 
N1k-1J (T, x- vn(t- T), n, P.»dT, 

k== 1,2, '0', (2.26) where PM' PJ,* are nonnegative functions satisfying 

where 10 is defined by (2.4) with a replaced by VCi. The 
above recursion formula can be obtained from (2. 9), 
(2.12) (with n replaced by vn). 

(b) When a= ~N, where ~ is a bounded continuous 
function on E, the sequence {N(k)} given by (2.25) con
verges to a unique solution N of (1. 2)-(1. 4) (with v = 1) 
if as satisfies the condition (2.3). On the other hand, if 
we define a sequence from the equation 

k=1,2,"', (2.27) 

together with the conditions (1. 3), (1. 4) for N(k" where 

get, x', n, p.,N) = f I'm f as(t, x, n, n', p., j.J.', N(t, x, n', j.J.'» 
o s 

x dn' dp.' + q(t, x, n, p.), (2.28) 

then we can solve this system to obtain another recur
sion formula which is given by 

N(kl(t,x, n, p.)=y(t, o,x, n, iJ.)cp(x- nt, n, p.) 

+ ft yet, T, x, n, p.) 
o 

Xg(T, X - net - T), n, p., 
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PM = SUp (PM(t, x, n, IJ.) 
(t,x,O,JL )EE 

+ fol'm ~ PZ(t,x,n,w,p.,p.')dWdP.) <00, (2.32) 

then it is possible to show the existence of a local 
solution N in the sense that, for some t1 > 0, N(t, x. n, p.) 
satisfies the system (1. 2)-(1. 4) for 
t <=:: [0, tJ, (x, n, p.) E: Q =D XS x [0, p.rn)' In fact, we have 
the following: 

Theorem 2.4: Assume that a= as = ° when N = ° and 
that (2.31) holds for some M > 0. Then for I CP(x, n, p.) I 
<M, the problem (1. 2)-(1. 4) has a unique local solu
tion N(t,x, n, p.) on [0, tl)xQ for some tl >0, where 
[0, tl ) is the largest interval in which INI is bounded by 
M. If (2.31) holds for every finite M, where PM' pZ may 
depend on M, then N can be continued for as long as it 
remains bounded on Q. 

Proof: Define modifications for a, as by 

)

a(t,x,n,p.'M) if T/>M, 

a(t,x,n,p.,T/)= a(t,x,n,p.,T/) if /T//.:sM, 

a(t,x, n, p., -M)if T/ < -M, (2.33) 

and a similar expression for (]s(t,x, n, n', p., jJ.',T/). Then 
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a, as are continuous in 1) and satisfy the respective con
ditions (2.2), (2.3) for all1Jl' 1)2 E (- 00, 00) (with P = PM' 
Ps = pZ). Hence by Theorem 2.2 the "modified problem" 
(1. 2)-(1. 4), where a, as are replaced by a, u , has a _ s 

unique solution N(t, x, Q, IJ.) which can be constructed 
from (2.25). Since IN(O,x,Q,J.L)1 = Icp(x,Q,J.L)1 <M, 
there exists tl > 0 such that IN(t, x, Q, J.L) I ~M on [0, tl ] 
xQ. But a,as coincide, respectively, with a,a .. when 
IN(t, x, Q, J.L) I ~M, we see that N is the unique solution 
of the original problem (1. 2)-(1. 4) for at least 
(t, x, Q, J.L) E [0, tl]xQ, and it remains so whenever 
INI 'SM. In case (2.31) holds for every finite M, we 
may consider N(tl' x, Q, J.L) as the new initial function cp 
in (1. 3) and choose Ml >M in the definition of a, as in 
(2.33). Then the same argument leads to a unique local 
solution of (1. 2)-(1. 4) for t E [tl' t2], (x, Q, J.L) E Q, where 
t2 > tl • By continuing this process and using the uni
queness property of the solution, we can continue the 
solution for as long as it remains bounded on Q. This 
proves the theorem. 

Theorem 2.4 states that under the condition (2.31) 
for every finite M the local solution either exists on 
the whole domain E or is unbounded at some finite 
teo (0, T] and some point (x,~, J.L) EQ. This result is in 
analogy to the classical existence theorem for Cauchy 
problems of ordinary differential equations. Further
more, the proof of Theorem 2.4 shows that the local 
solution N can be constructed through the recursion 
formula (2.25). However, in the process of construc
tion the functions a, as in the definition of fo should be 
replaced by cr, as since it is not known whether the 
sequence {N<kl} remains convergent if the original func
tions a, as are used. It is to be noted that the conditions 
in (2.31) are satisfied by any polynomial function in N 
with bounded coefficients. For example, if 

aCt, x, Q, J.L,N)=al(t,x,~, J.L)N + a2(t,x,~, J.L)~, 

(2.34) 

where aI' a2 are bounded continuous functions on E then 
the first condition in (2031) is satisfied with PM = a l 

+ 2Ma2 • The second condition in (2.31) is also satisfied 
if as has the same form as in (2.34). 

3. POSITIVE SOLUTION 

In this section we show that the solution N of the 
problem (1. 2)-(1. 4) is positive or at least nonnegative 
whenever the initial function cp and the source q are 
nonnegative. It is easily shown by induction that if a, as 
are given by the linear function a="L.N, as="L.sN, where 
"L.,"L.s are nonnegative, and if the initial iteration N(Ol is 
nonnegative, then each approximation N(kl given by 
(2.29) is also nonnegative and thus by Remark 2. l(b) the 
sequence {N(kl} converges to a nonnegative solutionN. 
In fact, if we take N(ol=O, then {N(k1} converges mono
tonically to ]V. In view of the uniqueness theorem the 
solution of the linear problem (1. 1), (1. 3), (1. 4) is 
therefore nonnegative as is to be expected from physical 
point of view. The same conclusion holds if a="L.N and 
as is nonlinear in N but is a nondecreasing function of N. 
This is due to the fact that the sequence {N(kl} given by 
(2.29) is nonnegative for each k since the function g de
fined in (2.28) is nondecreasing in N and is nonnegative 
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when N '" O. The monotone property of this sequence 
also follows from the nonincreasing property of g when 
N(Ol=O. However, in the general case, where both a, as 
are nonlinear in N, the sequence of approximations is 
given by (2.25) in which the function fo is not necessarily 
nonnegative, and thus this sequence may not be non
negative for every k. To overcome this difficulty, we 
transform the problem (1. 2)-(1. 4) by letting u 
= exp[- (a - fl)t]N, where a> 2/3 '" 2p. Then (1. 2) is 
transformed to the form (with v = 1) 

au 
at+~·V'u+au=f(t,x,~,J.L,u)+/3U, (3.1) 

where f is given by (2.8) with >c = (a - i3l. As usual, the 
boundary and initial conditions (1. 3), (1. 4) are reduced 
to (2.6), (2.7), respectively. In view of (3.1) which is 
of the same form as (2.5) except with f replaced by 

ff',(t, x, Q, IJ., u) = f(t, x,~, J.L, u) + i3u 

we can obtain a sequence {u(k)} from the recursion 
formula 

(3.2) 

u(kl(t,x,Q,J.L)=exp(-at)cp(x-Qt,Q,J.L)+ t exp[-a(t-r)] 
, 0 

Xff',(r, x - ~(t - r),~, J.L, 

u(k-ll(r,x_U(t_ r),Q, J.L»dr 

k=1,2,·... (3.3) 

Since by the hypothesis (H) the function 

(ff',(u»)(t, x, Q, Il) = faCt, x, ~, Il, u(t, x, ~, iJ.)) (3.4) 

satisfies the condition [see (2.21)] 

IIfs(w 1) - fiwz)\\ ~ ([3 + p) \lw I - Ulz\\ [UI 1> Ulz E Co(E) 1 
(3.5) 

and since a> 13 + P, we see from the proof of Theorem 
2.1 that the sequence {U(k1} given by (3.3) converges to 
a unique solution u of the problem (3.1), (2.6), (2.7) 
and this solution must be the same as that given in 
Theorem 2.1 (with A = Ci - J3). The implication of this 
new sequence is that it leads to a monotone nonde
creasing sequence as is shown in the following: 

Theorem 3.1: Let (H) be satisfied and let cp, q be non
negative on E. If as'" ° when N '" 0, then for any u (01 ~ 0 
the sequence {U(kl} given by (3.3) converges in Co(E) to 
a unique nonnegative solution u of the problem (3.1), 
(2.6), (2.7). If, in addition, as is nondecreasing in N 
and U(Ol ",0, then U(k-l) ~U(k1 for every k and {U(kl} 

converges monotonically to U. 

Proof: For the first part of the theorem it suffices to 
show that U(kl '" ° on E for every k since the convergence 
of {u<kl} follows from (3.5) and the contraction mapping 
theorem. By the condition (2.2) with 1)1 =U(k-l 1, 1)2 = 0 
and by the hypothesis on as we have 

when u (k-l 1 ~ O. The above inequalities together with the 
nonnegative property of q imply that, for u (k-1 ) ~ 0 on E, 

f(t, x, Q, Il, U(k-11) + {3U(k-11 ~ (13 _p)U(k-l) >- ° (3.7) 

[see (2.4), (2.8)1. Hence by (3.3) and the nonnegative 
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property of cJ> and u(O) we have u(1);, 0 on E. The proof 
of U(k);, 0 on E for every k follows from (3.3), (3.7) by 
induction. To show the monotone property of {U(k)} when 
u. is nondecreasing in N, we observe from the choice of 
u(O) =0 that U(l);, U(O). Assume, by induction, that 
U(k);, U(k-l) on E. Then since 

u.(t, x, n, n', JJ., JJ.', exp(\t)u(k)(t, x, n', JJ.')) 

;, a.(t, x, n, n', JJ., JJ.' exp(\t) U(k-ll(t, x, n', JJ. ')), 

where A = (a - tl), we obtain from (2.2) that 

fa(t, x, n, JJ.,U(k» - fa(t, x, n, JJ., U(k-l» 

;'(!3_p)(U(k)-U(k-!»;,O. (3.8) 

It follows from (3.3) that u (k+l) - U (k) ;, O. This completes 
the proof of the theorem. 

By letting N(k)= exp[(a - tl)t]U{k>, N = exp[(a - !3)t]u, 
and 

g(t, x, n, JJ.,N)=fo(t, x, n, JJ.,N) + !3N, 

we obtain the following conclusion: 

(3.9) 

Theorem 3.2: Let the conditions in Theorem 3.1 be 
satisfied and let N(O);, O. Then the sequence {N(k)} given 
by 

N(k)(t, x, n, JJ.) = exp( - !3t) cJ>(x - nt, n, JJ.) + t exp[ - !3(t - T)] 
o 

x ft(T, x - n(t - T), n, JJ., 

N(k-l) (T, X - n(t - T), n, JJ.» dT, 

k= 1, 2, "', (3.10) 

converges to a unique nonnegative solution N of the 
problem (1. 2)-(1. 4). If, in addition, as is nondecreasing 
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in Nand N(O) = 0, then N(k) ;, N(k-l) on E for every k and 
{N(k)} converges monotonically to N. 

Proof: Since the nonnegativity and monotonicity as 
well as the convergence of {U(k)} imply the same for 
{N(k)} and since (3.3) is reduced to (3.10) when U(k) is 
replaced by exp[ - (a - !3)t]N( k), the conclusions in the 
theorem follow immediately from Theorem 3. 1. 

Remark 3.1: The assumption of the nondecreasing 
property of u. in Theorems 3.1 and 3.2 is physically 
realistic since a. represents the neutrons production 
due to scattering and fission. It is obvious that more 
neutrons in the medium will cause more scattering and 
fission. 
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We give a complete characterization of the one-dimensional nonconjugate subalgebras of the extended 
SchrOdinger algebra (and of the Schrodinger algebra). This yields a classification into conjugacy classes of all the 
Hamiltonians admitting the extended SchrOdinger algebra as time dependent invariance algebra in the 
SchrOdinger picture. Moreover, we determine the action of the inner automorphism induced by the general 
element of the extended SchrOdinger algebra from which the explicit time dependence of the generators is 
deduced, whatever Hamiltonian is considered. 

INTRODUCTION 

This paper is a continuation of a seriesl devoted to 
the study of possibilities offered by the introduction of 
explicit time-dependent operators in the Schrodinger 
picture of the Galilean quantum mechanics. Indeed, 
given H the Hamiltonian of a conservative system, the 
Schrodinger equation H7./!=i a/at 7./! transforms covariant
ly under the time-dependent transformation generated 
by the operator S(t) if the Hamiltonian transforms ac
cording to H-H =S(t)HS-l(t) +i[as(t)/at]s-l(t) whereas 
7./! cotransforms following 7./! - ~ = S(t)l/!. 

Then it is possible to extract from the set of the S(t) 
operators the ones such that [H,S(t)]=iaS(t)/at; these 
operators correspond to transformations which keep in

variant the Hamiltonian and generate a Lie algebra 5t, 
not necessarily a finite-dimensional one. Moreover, 
such operators do not depend explicitly on time in the 
Heisenbe rg picture and take their values for t = 0; we 
set 

S =S H= exp(iHt)S(t) exp(- iHt) =S(O). 

Consequently, the set {s} is a Lie algebra 50 isomorphic 
to S t' which makes clear the meaning of the time t as 
a parameter in the Galilean mechanics. 

Conversely, any Lie algebra of time-independent 
operators which do not commute with a Hamiltonian in 
the Heisenberg picture corresponds to a time-depen
dent invariance algebra in the Schrodinger picture. 

It is worth noticing that the generators of such in
variance algebras are integrals of motion owing to 
the vanishing of the time derivatives of their expecta
tion values. 

Now let C (0) be the enveloping algebra of the funda
mental observables 0 = {q(Jl), p(Jl), m(Jl)} characteriz
ing the individual constituents (Jl c:: [1, n]) of a quantum 
mechanical system,2 from the above properties every 
Lie algebra which can be mapped via an injective homo
morphism into [(0) can be considered as an invariance 
algebra for anyone of its one-dimensional subalgebras 
interpreted as a Hamiltonian. 

In this paper the case of the one central element ex
tension Seb of 5 eb ' the Schrodinger algebra, is treated, 
and likewi;e the dalilean case since?: c s:;: 

In the first section a complete characterization ~ 
the one-dimensional nonconjugate subalgebras of 5 ci"J 
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(and of S ci"J) is given. Indeed, the eigenstates of two 
Hamiltonians conjugate by an inner automorphism of 
.~ are naturally related, so it is sufficient to classify 
the Hamiltonians into conjugacy classes. Hence we 
obtain a reliable classification of all the Hamiltonians 
posse sing the Schrodinger algebra as invariance alge
bra. It must be noticed that the same kind of classifica
tion takes place in the problem of separation of vari
ables in the Schrodinger equation. 3 Indeed it has been 
shown in Ref. 3 that the possible coordinates which 
permit the separation are associated to the orbits 
of the Schrodinger group on the projective space of 
the Schrodinger algebra. 

In the second part the explicit time dependence car
ried by the generators of the Schrodinger algebra in 
the Schrodinger picture is exhibited for all the possible 
Hamiltonians. This is achieved by computing the action 
of the inner automorphism induced by the general ele
ment of Sch.J on the dual vector space of Sci"J (i. e., we 
make use of the coadjoint representation). 

I. ONE-DIMENSIONAL NONCONJUGATE 
SUBALGEBRAS OF SCh3 AND SCh;' 

The extended Schrodinger algebra can be written as 

5;;3 "'H3 0 (503E9S02,l) (1) 

where H 3 is the Heisenberg algebra (i. e., the Lie 
algebra of the Weyl group) and 503 is the familiar ro
tational algebra. We use a natural basis which comes 
from the above decomposition, a physical realization 
of which, in terms of the canonical variables, and the 
nonzero commutation relations are given by 

[

Ki= t;jm(Jl)q/Jl) 

P j = '6Pj (Jl) 
" 

M='0m(Jl) 

5 0 3: [Jj=~Ejk1qk(Jl)Pl(Jl) 

T -.!'6 p2
(Jl) 

- 2 " m(Jl) 
[T,c1=iD 

1 
C=2~m(Jl)q2(Jl) [D,T1=-2iT 

D=- .!I:[q(Jl),p(Jl)1+ [D,c1=2iC 
2 " 
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The action of the semisimple part 50affi502.1 on the 
solvable ideal H a leads to the following nonzero commu
tation relation 

[J"Kk]=i€,k1Kl> [T,K,]=-iP" [D,K,]=iK" 

[J"Pk]=i€,k1Pl> [C,P,]=iKj , [D,P,]=-iP,. 

The extended Galilei algebra 

(;a ~Ha o (SOaffi ~1(T» 

(3) 

(4) 

where ~ l(T) is the noncompact one-dimensional algebra 
generated by T, clearly appears as a subalgebra of :fc';;-'. 

a 
Obviously a six-dimensional Abelian algebra ~ 6 

;;;H/'il1f.Ml takes the place of the Heisenberg algebra 
in the corresponding nonextended algebras S clls and 
C; a' 

The general element of~, reflecting the vector 
space decomposition of the dis of (1), is denoted 

X =A·J + liT +j3C +yD +P' P+ T'K + J.J.M (5) 

where Ii, (3, y, J.J.Em and A, p, TEm3
• Now let us con

sider the problem of determining the one-dimensional 

nonconjugate subalgebras of or;;;--: Owing to the central 
extension structure it is easy tcf deduce that two non
conjugate subalgebras of S Cbs remain nonconjugate sub
algebras in ~ Consequently, we have first to con
sider the one-d"imensional nonconjugate subalgebras of 
5 cils' Then the semidirect sum structure makes this 
task easier. Indeed let A be the semidirect sum 
A ~B DaC [defined by the homomorphism 0': C -f) (j3) 
the derivation algebra of B], then two nonconjugate 
subalgebras of C remain nonconjugate as subalgebras 
of A. In the decomposition of ~ given by (1) C is the 
semisimple part S03 ffi S02.1, the one-dimensional non
conjugate subalgebras of which are well known: 50a 
possesses only one-dimensional subalgebra correspond
ing to the fact that A 2 its continuous invariant is defin
ite positive; 502.1 possesses three one-dimensional 
nonconjugate subalgebras according to whether the 
invariant (12 =y2 - j31i is positive, negative, or null. 
The coupling between the SOa and S02.1 one-dimension
al subalgebras causes to appear families dependent 
on the parameter 1) =W (i. e., to two distinct values of 
the parameter correspond two distinct classes). 

It then remains to determine how a nontrivial ~ 6 

TABLE I. One-dimensional nonconjugate subalgebras (ODNCS) of the one central element extended Schrodinger algebra. a 

ODNCS of the Schrodinger algebra 

Family Representative Characterization of the Represen- Characterization of the components and 
or elements-part I various components tative ele- parameters 
class ments-part II 

.5'°a .5'°2•1 W' a(.P)IW~(K) W'1(M) 

J a IA 1>0 x A'P=A'T=O J.I=J.lo Ja+~M J.I"'J.lo=~ A 

2 Ja+Ka IAI >0 x P. TE lRa J.lElR 

3 T+C X a 2 <0 p, TE lRa J.I=J.Lo T+C+~oM J.L"'J.Lo=- Z/2a 2 

4 D X a 2 >0 p, TE lRa J.L=J.Lo D+l;oM J.L"'J.Lo=-Z/2a 2 

5 T x 0i 2= 0 0-1/2p = (3-1/2T J.L=J.Lo T±M J.L"'J.Lo=h2 

=VE lRa 

6 T+Ka x a 2= 0 p, TElRa J.LElR 

7" Ja+l1(T+C) IAI >0 a 2 <0 p, TE lRa J.L =J.Lo J a+l1(T+C) -1 2 2-
J.L "' J.L 0 = 2( Ci 2 + A 2) 2 [( Ci + 3A ) "" + (~ -1)K 

+I;M 
- 4A2(A, T, p) 1 

8 Ja+ T+C IAI >0 0i 2<0 AAp='l\flT=O J.L=J.Lo J a+ T+C+~M J.L "'J.Lo=- ~ 
IA 1= ICi I 

0' 

9/: Ja+T+C+I:Kz IAI >0 Ci 2<0 p, TE lRa J.L=J.Lo Ja+T+C+I:K2 "' = K (A T p) 2 = Z _ _ K 
IAI=la I 

J.L J.Lo ~ +"2tF, I: ..r:::ai A2..r-:::czt 

+~M 
2~ 

+ IAI 

101) Ja+l1D IAI >0 0'2>0 p, TE lRa J.L=J.Lo J a+1)D+I;M -1 [- K 1 
J.L "'J.Lo= 2(Ci2+A~ ",,+ ~ - 2(A, T,p) 

11 Ja+ T IAI>o Ci 2 = 0 A'U=O J.L=J.Lo Ja+T+I;M 
(A T p) 1 

J.L"'J.Lo = ~+ 21AI (vi-a<). 

12& Ja+ T+I:Ka IAI >0 0'2= 0 p, TE lRa J.LE lR I: = A • u/ I A 15/ 2 

13 Ka x x pA T=O J.LElR 

14 K a+P2 x x p, TElRa J.LElR 

15 x x P=T=O M J.L=1 

aWe set: 'E.=j3r!- +or +2'Y(P'T), X={3(P'A)2 +o(T'N2 +2'Y(p.AHr·N. 
U={31/2p+o1/2T, v~=(v'A)/IAI. 
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component can be added; this yields some constraints 
on the parameters p and T in the full characterization 
of the one-dimensional nonconjugate subalgebras of 
5 c~ and causes the appearance of new families indexed 
by t. The results are summarized in Table I (part I) 
where a representative element of each conjugacy class 
is given. Note that it must be distinguished between 
the case Q2 = 0 with {:3 = y = 6 = 0 (denoted by crossed 
boxes in Table I) and the nontrivial Q2 = O. Obviously 
such a distinction is meaningless for A2. 

Next the one-dimensional nonconjugate subalgebras 
of ~ can be deduced by computing how the mass gen
erator adds to each subalgebra of 5 ells' causing the 
appearance of families indexed by ~, without omitting 
M which is its own conjugacy class. The results are 
gathered in Table I (parts I and n). 

It is interesting to compare the one-dimensional non
conjugate subalgebras of the Schrodinger algebra to the 
Galilean ones. 4 The following classes and families 
1, 2, 5, 6, 11, 12" 13, 14 appear in the Galilei alge
bra also. One class represented by P3 and one family 
J s + tP3 belonging to the one-dimensional nonconjugate 
subalgebras of C; are conjugate to Ks and J s + K s' 
respectively, hence do not appear in Table 1. Further
more, by the existence of a dilation, generated by 
D, the following four families disappeared: J s + tK3, 
T + 1;;K3 , J s +y/T, Ks + P2P2' the four classes 2, 6, 11, 
and 14 taking their place, respectively. 

In Table II the centralizers of the one-dimensional 
subalgebras of ~ (and 5 ch) are given. In quantum 
mechanics they are interpreted as symmetry algebras, 
the generators of which, commuting with the respec
tive Hamiltonian, do not take any time dependence. 

What about the one-dimensional subalgebras of ~3 
as Hamiltonians? By construction all the subalgebras 
belonging to the part II in Table I possess a nonzero 
component on M, so they cannot be considered as 
Hamiltonians in Galilean mechaniCS since a rest mass 
term is not contained in the energy. Consequently, the 
candidates as Hamiltonians stand in the part I of Table 
I only. Let us note that this part contains the common 
5 cl>o and 5 cl>o subalgebras, recalling the pOSition ex
pounded in Ref. 3. 

One finds again1b three familiar Hamiltonians as 
representative elements of the classes 3, 4, and 5, 
which are, respectively: 

T + w2C: the Hamiltonian of a system in an external 
isotropic harmonic field; 

T - w2C: the Hamiltonian of a system in an external 
"antiharmonic" isotropic field; 

T: The Galilean Hamiltonian of a free (iso
lated) system. 

Other representatives of the classes 3 and 4 are T 
± w2C + (e / m)E • K which are the Hamiltonians of a 
system of identical charged (e) particles in an uniform 
electric field E besides the (anti)harmonic one. 

The Hamiltonian of a system with a linear potential 
T + cpK [free fall or dipolar coupling of a system in an 

2174 J. Math. Phys., Vol. 16, No. 10, October 1975 

uniform electric field (Stark effect)] is a representative 
of the class 6. 

In the class lone finds J s which governs a system 
having a magnetic momentum in a static magnetic field 
to which a transversal uniform electric field can be 
added. The same physical system furnishes represen
tative Hamiltonians of the class 2, in which an uniform 
electric field cannot be excluded. 

Let us now consider the Hamiltonian of an identical 
charged particle system of spin zero in an uniform 
magnetic field B directed along the 3-axis (B:= Bs) 
which can be written 

Such a Hamiltonian cannot be expressed in terms of 
generators Of~, but this impossibility can be over
come by adding a convenient anisotropic external har
monic field such that 

2 2 2 e2 
2 2 2 2 

W 1 =W2 =W r and -4 2 2B + Wr=W3=W ; me 

then we obtain the Hamiltonians 

which are representatives of the family 7~ with y/ 
= 2me I W I/eB. 

Moreover, we get a representative of the class 8 
if wT = 0, Again a uniform electric field can be added 
in the above Hamiltonians as long as the constraints 
on T given in Table I are fulfilled. As in class 2, a uni
form electric field cannot be eliminated in the repre
sentatives of the family 9t. 

II. THE SCHROOINGER ALGEBRA IN THE 
SCHRODINGER PICTURE 

To every Hamiltonian H admitting s;;;: as an invari
ance algebra corresponds an explicit time dependence 
of the generators determined by 

S(t) = exp( - iHt)S(O) exp(iHt). (6) 

(Obviously, as already mentioned, the stabilizer ele
ments of H do not take a time dependence. ) 

By taking as a Hamiltonian X the general element of 

S~h defined in (5), we obtain the general explicit time-
Cs ~ 

dependent form of the generators of 5 cl>o in the 
Schrodinger picture at once. 

We use the technics described in Ref. 1c. Let us 
introduce the coadjoint representation of X 

coadX=i<I! (7) 

where <I! is a 13x 13 matrix which is going to act on the 
dual vector space of the Lie algebra. Then we have 
just to construct the matrix exp( <I!t) since the explicit 
time dependence is given by 
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p(t) p 

K(t) K 
M M 
J(t) =e~t J (8) 

T(t) T 
C(t) C 
D(t) D 

This is achieved by using the standard matrix exponen
tiation methods. 5 As a consequence of the Cayley-Ham
ilton theorem, exp( <l>t) is expressed in terms of the 
twelve first powers of <I> and can be written, by using 
the Lagrange-Sylvester interpolation polynomial, as 
follows: 

exp(<I>t) = [1 + <l>t + <1>2 (t2 + 2~ ~ ) ] ? ~n~- <1>2 (9) 

<1>3 ( cf!~ <1>2) + 2: 2..-1 [1 (f. -=-~ [eajt(Ujn + <1» + e-ajt(ujn - <1»] 
j Vj k#j j k 

where the u/s (j = 1, 3, 5, 7,9) are the following nonzero 
roots of the characteristic polynomial of <1>: 

u1 =a, u3=ii;>..i, us=a+ii;>..i, u7 =a-ii;>..i, ug =2a. 

(We recall that ;>..2 and a2 are computed from the 503 
and 5°2,1 components of X, respectively.) 

Although the final result is analytic when the powers 
of <I> are explicitly computed, we cannot apply the 
above expression (9) when several nonzero character
istic roots become equal or when some of them be
come zero. This feature causes the appearance of nu
merous particular cases but we shall not give all of 
them here. 

We must mention the case;>.. 2 = a 2 = 0 for which the 

TABLE II. stabilizers of the one-dimensional subalgebras. a 

Class or In the SchrOdinger algebra 
Family 

1 « ~1(K3) EB ~1(PS» 05°2,1) EBS o-ps> 
2 «~I(K3)EB ~1(P3» 0 ~1(C»EB502(J3) 

3 5 02(T+ C) EB5 0 3 

4 lR(D) 83503 

5 (~3(P) [l503)EB~ P) 
6 (~3(P) 05 02(JS» EB~ I(T+KS> 

7T{ 5 0 2(T+C) ffi5 0 2(JS> 

8 ~z(*) 0(502(T+C)EBS02(J3» 

9t ~1(J3+T+C+tK2) 

lOT{ 5 02(JS> EB lR(D) 

11 ~\ (P3)ffi50 2(JS>EB ~P') 

121; 
1 

~ \(PS>EB~ \(K3+ I1')EB50MS> 

13 (~3EB ~s> 0 (5 02(JS> ffi~ I(C» 

14 ~3EP~3 

15 

aThe generators corresponding to the particular representa
tive elements given in Table I are written between brackets 
when they are questionable. In Class 8 we have set 
W2(*) ~{Kl-P2' K 2+Pl} andH1(*) ~{Kl-P2,K2+Pj,M}. 
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time dependence becomes a polynomial one 

12 t" 
e~t=n + >' _<1>". 

.i=t n! 
(10) 

Another interesting case appears when H belongs to 
the semi simple part 5038'> 5°2 ,1 only, i. e., when we 
have H=H ,5o +H

1
5 ° . Owing to the direct sum 

3 2,1 
structure, the time dependence taken by the 503 
generators is governed by HIS ° only; likewise the 
5°2 ,1 generators take a time dependence linked to 
H ,5 0 2,1' Finally, to obtain the time dependence of the 
HeIsenberg generators we just have to superpose the 
commuting actions of HIS 03 and HIS °2 ,1' 

Under the part HI 5 ° = A' J the components of any 
3 

vector V under 503 become 

Vj(t)=exp(iHI5o·t)Vjexp(-iHI50 .f) (j=1,2,3) 
3 ~1 

(11) 

In particular, K, P and J which are vectors under 503 
transform according to (11). 

Under the partH I 50 =oT+{3C+yD, we get 
2,1 

PN)= (-; shat+ chat)Pj + : shatKj' 

K/t)=(; shat+chat)KJ -; shalFj' 

In the extended Schrodinger algebra 

~(3) 05 °2,\) EB-5-O-M s> 
IR(M) EB ~1(KS> EB ~\(Ci EBS 02(JS> 

lR(M) EBS 02( T+ C) EB5 0 3 

lR(M) EB lR(D) 835 0 3 

lR(M) EB Ctl 3(P) 05 os> EB ~ 1( 1') 

lR(M)EB(~2(P\,P2) :JS02(J3»EB ~1(T+K3) 

lR(M) EB 5 02( T + C) EP 5 02(J3) 

H1(*) 0(5°2(T+C)EBS02(J3» 

1R(M) EB ~ \(J3 + T + C + /;K2) 

lR(M)83S oPS>EB lR(D) 

1R(M)EBS02(JS>EB~I(PS>EB~ 1(1') 

1 
lR(M)EB~I(K3+ E1')EB502(J3) 

<1:'2(1,2) EB ~ \(3» 0 (5 02(JS> 83 ~ j( e» 
If j( 1) EB ~ j(Pz} EB ~ I(K3) 

scll;' 
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T(t)= [ 1 + (1 + ~) (cosh20!t -1) - ~sinh20!t ] T 

+ ~ (cosh20!t - 1)C + (pfiY (cosh20!t-1) 
2a a 

- 2~Sinh2Cd) D, 

C(t)= [1+ (1+ ~2) (cosh20!t-1)+ ~sinh20!tJ C 

15 2 (Y6 + 20!2(cosh20!t- 1)T+ 20!2 (cosh20!t-ll 

+ 26a sinh20!t) D, 

( y /315 ) 
D(t)= 0!2 - a2cosh20!t D - (:~ (cosh20!t -1) 

(12b) 

+ ~sinh2at) C+ (- :~(COSh20!t-1)+ ~sinh2(}'t) T 

It is interesting to treat the particular case of a 
Hamiltonian possessing an explicit Heisenberg com
ponent. The Simpler significative physical example is 
given by a system of identical charged particles in an 
external constant uniform electric field directed along 
the 3-axis E = (0,0, E 3 ) (dipole coupling). The 
Hamiltonian of such a system is 

e 
H= T+ -E.j(3 

m 

where e is the charge of the particles. A 2 = 0!2 = 0; then 
the corresponding explicit time dependence is a poly
nomial one governed by formula (10) which owing to the 
fact that <1>5 = 0 reduces to 

The stabilizer of H deduced from Table IT is the 
algebra 

1R (M) EB (~2(PIP2) 0503 (J3» EB ~l (H). 

Consequently, M, Pl'P2 , J 3 do not take any time de
pendence, while T(t) and K(t) are such that T(t) 
+ (e/m)E.j(3(t) is time independent. 

The time dependence of the others generators is 
given by: 

K 1,2(t) = - P 1,2t + K 1, 2, 

e t 2 

K 3(t)=- mE3M 2" -P3t + K 3' 
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e t2 e 
J 1 2(t)= -(E I\P\ 2 -2 + -(K I\E)l 2t + J l 2' 

t m ' m ' , 

T(t)= (~) 2E2M~+:(E'P)t+T, 

(,e) 2 t
4 

e t
3 

(: e ~ t
2 

C(t)= - E2M-+-(E'P)-+ 2T-
m

(E'K) 2 
m 8 m 2 

+Dt+C, 

D(t)= (!!..-) 2E2M~+~!!..-(E'P)f 
m 22m 

+ (2 T - ~ (E • K)) t + D. 

This example gives a glimpse of peculiar time de
pendences taken by the generators of an invariance al
gebra (the Schrodinger one in the present case) in the 
Schrodinger pictureo 

CONCLUSION 

To conclude let us emphasize the fact that it is the 
existence of such time-dependence representations 
which permit us to consider operators satisfying (1) 
in the Schrodinger pictureo These operators are inte
gral to motion and generate invariance algebras which 
contain the usual degeneracy algebras.' 

As it has been shown that the time dependence are 
generally complicated, so the invariance algebras 
are easier to handle in the Heisenberg picture. 

Finally, it is interesting to note that the classification 
of Hamiltonians into conjugacy classes, natural in our 
approach, appears as a bastc tool in the operator char
acterization of variable separation described in Ref. 3. 
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Differential geometry and internal symmetry 
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(Received 17 December 1974; final revision 13 March 1975) 

It is shown using a generalized Lyra space that the concept of inte~al s~mm~try can. be expressed in the 
language of differential geometry. By this method invariant and nonmvanant mteractlOns are generated by a 
gauge formalism. 

I. INTRODUCTION 

Internal symmetry implies the existence of a set of 
particles, which corresponds to a representation of 
some Lie group, all of which behave the same under 
some interactions, and presumably behave differently 
under others, We wish here to express the concept of 
internal symmetry in the terminology of differential 
geometry and to show that a Lyra space, 1 suitably gen
eralized, can be used for this purpose. 

To do this, we require a set of complex tensors, the 
wavefunctions of the particles, and a set of geometrical 
quantities, one for each quantum number, which differ
entiates among the tensors. Then we need (at least one) 
set of transformations forming a Lie group, which 
mixes the tensors. Finally we want the geometry to lead 
to interactions, at least one of which is invariant under 
the transformation and at least one of which is not. 

We define a space which has properties leading to the 
above results. SpeCifically, besides the coordinates x, 
we introduce variables y and transformations over them. 

In addition to these coordinates, we define over the 
space, functions which behave as tensors in the usu~1 
way under x-transformations and also have well-defmed 
properties under the y-transformations. Under the 
latter they break up into various classes, and we define 
further transformations among these classes. 

These transformations are all arbitrarily space 
dependent. 

Much of our development is similar to gauge theories 
(see Camenzind, 2 and references cited therein, for ex
ample). However, for our treatment the assumptions, 
viewpoint, and language are more geometrical. This 
may turn out to be more restrictive and suggestive (or 
differently restrictive and suggestive) than other types 
of theories. 

In particular the geometry has objects (the y's) and 
transformations over them. As a consequence there are 
different classes of tensors. and transformations among 
the classes. Hence internal symmetry flows directly 
from the geometry,. instead of being added on. 

The covariant derivatives then contain terms linking 
different kinds of tensors (that is interactions). We 
must introduce one further (phYSical) assumption, Which 
here is that the tensors are eigenfunctions (in the Dirac 
formalism sense) of their covariant derivatives. This is 
a natural generalization, to this space, of the usual 
quantum mechanical (in the Dirac formalism) require
ment that, for a free particle, the wavefunctions are 
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eigenfunctions of the ordinary derivative. It seems less 
ad hoc than the requirement of minimal interactions. In
deed the occurrence of the interaction terms appears to 
be more natural in this formalism, than in the gauge 
formalism. 

Because the tensors undergo, besides the usual space 
and internal transformations, another set, those for 
the y's, there appears an interaction which is symmetry 
violating. 

Hence the geometry implies the presence of internal 
coordinates and interactions, and it further implies 
that there are some which give internal invariance and 
others which break it. 

II. THE GEOMETRY 

We assume an n-dimensional space and that there 
are k quantum numbers to be described geometrically. 
The points are labeled by coordinates xi, ... ,xn. In ad
dition we introduce k auxilary variables Yw' In this 
space we perform the following types of transformations. 

First we can rotate x in the usual manner, leaving 
the y's fixed, so that 

x,i =A~(x)xJ. (1) 

We can also leave the x's invariant and transform 
the y's according to 

y' w = sw(x) Yw, (2) 

where the s's are mutually independent arbitrary func
tions. These are the gauge transformations. We need 
the function 

(3) 

Although it might be useful to consider complex A's 
(in analogy to a previous analysis3) we restrict our con
siderations here to real ones, and so require thats 
be positive. 

The third type of transformation is conSidered below. 

Tensors behave in the usual way under transforma
tions of the x's 

T'(j ••• m .. ·=(A-i)f··· A:··· Tp ... 
q 
.. •• (4) 

We assign every tensor to a class specified by a set 
of numbers (cil' .. ,c~), where the c's can have any real 
values. The class is denoted by c, for short, and a ten
sor of class c gauge transforms according to, suppress
ing indices, 

(5) 
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The final transformation leaves both the x's and y's 
invariant, operating only on tensors, and changes ten
sors of one class to tensors of another class. Again 
suppressing space indices, but using an index to indicate 
the class, we have a set of transformations of the form 

(6) 

Some, but not necessarily all, of the c's differ between 
classes Q' and 13. The J's are required to form a Lie 
algebra, and there are various sets of J's, correspond
ing to different representations. The E'S are arbitrary 
functions. The capital Latin index denotes the different 
internal generators, while the Greek one refers to the 
internal coordinates and its range depends on the 
representation. 

There is a Y for each quantum number operator of the 
algebra. Thus in SU(3) there are y's for quantum num
bers Y, [z, and [2. 

In order to make Eq. (6) gauge invariant, we have 
to take the set of c's for Jts of the form 

for each c of the set, where c",goes with T(a). This 
means that we consider that the internal symmetry 
operators carry a charge. 

The displacement is defined as 

d~=Yl" ·Yk dx. 

(7) 

(8) 

To define the connection, we take a vector, with all 
c's equal to 1, for which 

(9) 

in one coordinate system and require its expression in 
another system. Since 

we get 

vm + (A -I),!, Ai Vf 
,n 'It n 

and with 

rm = (A-1)m AI 
fn I f,n 

we get 

vm n+ rin Vf +0 A(l)n vm = o. 
• I 

So the connection is 

fin = rin + 0 5f
m A(k)n. 

k 

We have the usual transformation law for r, 

q~ =A:(A -l)~(A-l)~ r~n +A:(A-I)L. 

We see that A is a space vector and under the 
transformation 

y" =s'sy 

it becomes 

A' = a lns's/ax 
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(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

so that, in general, 

A~ (l) = (A-I)::, Am(l) + iJ Ins" lax'". (18) 

The transformation of r is immediate. 

The covariant derivative is, for arbitrary c's, 

VI;J=vi.J+r~JVa+~c(l)A(l)JVI, (19) 

and similarly for tensors. 

The metric tensor is defined from the distance 
squared 

ds2 =giJ(YI' "Yk)2dxldxJ=giJd~ide, 

and the inverse tensor is defined 

(20) 

giJgJk = 5~. (21) 

We take all the e's for glJ to be - 2 and for gO to be 2. 

For Simplicity we further require that the covariant 
derivative of g, and hence of g7TyZ be zero. Using Eq. 
(19) with { } the Christoffel symbol, and proceeding in 
the usual manner we get, assuming that r is symmetric, 

(22) 

The geometry can be specialized by taking k even and 
allowing only those transformations for which 

(23) 

where W is a constant, and so on for all the other 
pairs. This gives A(l) = - A(2), etc., and the A term 
disappears from the connection which just becomes the 
Christoffel symbol. 

Above we have written down that part of the connection 
which gives the rotation of the space indices due to 
translation. We now look at the part which gives the 
corresponding rotation of internal indices. The total 
connection is the sum of the two. 

This part is defined from the covariant derivative of 
a space scalar. It is 

(24) 

Following Anderson, 4 we require that it transform 
under the internal transformation in the same way as 
the scalar does. We find n transforms under these 
transformations as 

(25) 

Putting all the parts together, we get the expression 
for the complete covariant derivative for a vector (and 
the generalization to higher rank tensors is immediate) 

V:;p= V7:. p+{;:'p} V: -zt[A(i)n5;' 

+A (i)p5::' - A (i)qg"mgnp ] V'" n 

+[0 A(i)pc(i, a)l V:- np~ vsm. 
i 

(26) 

The field A is a space vector. Under internal trans
formations A is a scalar, and the representation under 
which n transforms is determined by the representa
tion of the object for which it is the connection. All 
these different connections for different representations 
are related by the rules of decomposition of the product 
of group representations. 
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The covariant derivative of A is 

A(Om;n= Am,n - {,tn}Ap +y [A(j)m~-A{j)nB~ 
-A{j)Q~gmn]Ap. (27) 

These equations are required to be gauge invariant, 
which places restrictions on the connections. For A all 
the c's are zero from Eqs. (3) and (15), and thus so 
are the c's for r from Eq. (18), while for ~m! all the 
c's are of the form 

(28) 

from Eq. (21). This leaves Eqs. (23) and (24) invariant 
under gauge transformations. 

To get invariant equations ("relativistic wave equa
tions") for tensor T a , we consider the object If:, 
which transforms according to the vector representa
tion for the i index (which runs over the dimension of 
the space) and according to whatever representation a 
and b belong to (and these run over the dimension of the 
representation). It is a representative of the direct 
product of representations going with i, a, and b. 

Usually a tensor is written in nonreduced form with 
a set of indices, but here it is written as an irreducible 
representation with one index. So its connection is a 
combination of connections for the fundamental repre
sentation, which we do not write explicitly, but denote 
by r', which includes the A term. 

It is assumed that T is an eigenfunction of the covari
ant derivative with eigenvalue m, which gives the in
variant equation 

If: T "~f = If: T "~i +lj~ r~~ T "c + li:[0A {j)jc{j, a)]T '" a 
j 

(29) 

Likewise we can convert Eq, (24) to an invariant 
equation, and get a corresponding equation by forming 
a curvature for ~. 
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Thus we have an equation describing the tensor, with 
interactions. The Christoffel symbol can be interpreted 
as being due to the gravitational field, and the term with 
with the A as being due to a universal field to which all 
particles are coupled. The c term is a symmetry break
ing one while the final term gives invariance under in
ternal transformations and so is a symmetry preserving 
interaction. 

The fields to which the particle is coupled themselves 
obey relativistic wave equations, so that we have a set 
of coupled equations for the particle and the fields it 
interacts with. 

III. CONCLUSION 

We have described internal coordinates, and both 
symmetry conserving, and symmetry breaking inter
actions in the terminology of differential geometry. 
Specifically we have introduced a space, defining over 
it coordinates, auxilary variables, and tensors, and 
transformations over these quantities. By imposing the 
requirement that these transformations be arbitrarily 
space dependent and proceeding as usual in differential 
geometry, we are led to differential equations, based 
on the covariant derivative for the geometry, governing 
the tensors (relativistic wave equations), which link 
tensors of different classes. Some of their terms are 
invariant under the internal symmetry transformations, 
others not. 

Internal symmetry and the form of these equations 
are implied by the geometry. In this space, symmetry, 
and symmetry breaking, fit naturally. 
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ERRATA 

Erratum: Heat conduction model with finite signal speed 
[J. Math. Phys. 16, 971 (1975)] 

B.DeFacio 

Theoretical Physics Institute. Los Alamos Scientific Laboratory. Los Alamos. New Mexico 87544 
(Received 21 May 1975) 

(1) Professor E. L. Roetman, University of Missouri 
at Columbia Mathematics Department must be acknowl
edged prior claim to Eq. (2. 10) and to an earlier dis
cussion of Sec. 3 which follows from it. His article, to 
be published in Int. Jo Eng. SCi., proceeds my article 
and has been delayed through no fault of his. However, 
Eq. (1. 2) generalizes his result and relates it to other 
approaches to the problem. And several other matters 
are discussed, which Professor Roetman did not studyo 

(2) Eq. (2. 10) should read t = - KVT - hVp. 

(3) On page 974, Refs. 12, 13 should be deleted from 
the texts. 

(4) Ref. 7 should be changed to Int. J. Eng. ScL (to 
appear-earlier manuscript). 

(5) Refs. 11, 12 should be interchanged. 

These corrections do not change the results or con
clusions of the paper. 

Erratum: Nonspreading solutions of the inhomogeneous 
scalar wave equation [J. Math: Phys. 16, 857 (1975)J 

w. E. Couch and R. J. Torrence 

Department of Mathematics. The University of Calgary. Calgary. Alberta. Canada 
(Received \0 June 1975) 

Equation (1. 7) should read 

_ ~ dn(u) 
0- LJ , 

n=3 rn 
T' a positive integer. 

Equation (2.12) should read 

T-L-2 
(_ 2)i(L + j)! di 

j! (j + 2L + 1)! duJ d(U)L+3+J =: O. 6 
J=O 

The first sentence of the second full paragraph on 
page 858 should read: 

"Second, any discontinuity in ?/J across the surface 
U =:u2 (Fig. 1) must have the structure of the discon-
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tinuity of a retarded field, and these are necessarily 
finite series in 1/r. " 

The claims made in the first two sentences of this 
same paragraph are true if the driving term 0 satisfies 
certain requirements which were not stated. That 0 be 
continuous at ~ = u2 is stronger than necessary for the 
first sentence to be true; that all the dn(u) have a finite 
number of zeros between u1 and u2 is stronger than 
necessary for the second sentence to be true. A forth
coming publication will include a more direct justifica
tion of our claim that Eqo (2.12) is equivalent to non
spreading, and the mild restrictions on 0 for this to be 
true will be explicit there. 
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